scholarly journals Physicochemical Properties of Soils as Affected by Minimum Tillage and Direct Seeding Cultivation on Dry Rice Paddy

2014 ◽  
Vol 47 (1) ◽  
pp. 8-15
Author(s):  
Myung-Chul Seo ◽  
Ki-Yeong Seong ◽  
Hyeon-Suk Cho ◽  
Min-Tae Kim ◽  
Tae-Seon Park ◽  
...  
2021 ◽  
Vol 70 (1) ◽  
pp. 27-40
Author(s):  
Yaung Kwee ◽  
Khin Soe

In this study, two sites from tea and apple growing sites were collected from Pyay village and Nine Mile village, Mindat district, Chin state of West Myanmar under a humid subtropical climate. The results of physicochemical properties of observed soils were neutral pH, favorable moisture, silty clay loam texture, very high content of organic carbon, organic matter and total nitrogen. However, the tea growing soil was very poor in phosphorus and potassium content. Moreover, both soils lack of available potassium. The content of heavy metals in both soils was not varied from each other and followed the order: Fe (iron) > Cu (copper) >Zn (zinc) > Pb (lead) > Cr (chromium) and was below the maximum allowed concentrations (MAC). Therefore, the studied soils are generally favorable for cultivation under the condition of application of phosphorus and potassium fertilizers. However, due to the regular application of fertilizers and pesticides, it is necessary to monitor these soils for PTE levels. Further research is recommended, which must include analyses of the physicochemical properties of soils to a two depths of 0-30 and 30-60 cm, especially for the area where fruit plants are grown. In addition, higher density of soil samples and sub-samples are necessary to produce a reliable dataset that will allow proper statistical analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Paul K. Essandoh ◽  
Mohammed Takase ◽  
Isaac Mbir Bryant

The quality of soils in rehabilitated small-scale mined sites needs thorough investigation since a lot of changes do occur. The study assessed the impacts of small-scale mining activities on concentration and distribution of soil physicochemical properties and heavy metals. The soil samples were collected from 120 (50 m × 50 m) plots. The concentrations of soil physicochemical properties (Ca, Mg, Na, N, P, K, and OC and EC) varied significantly ( p  < 0.05) between unmined and mined soils. However, there were no statistically, significant differences ( p  < 0.05) observed in the concentrations of Cd, Hg, Pb, As, and Cu between the unmined and mined soils. Despite the generally poor (33.8%) soil quality in the study area, mining activities further reduced it by 24.2%. Soils from mined sites with unfilled/partially filled pits had higher levels of K, Mg, and Na. As mined sites fallow period increased, concentrations of OC and Cd increased, while Ca, Mg, pH, Cu, Pb, and As and value of EC decreased. The number of years that mined land remained fallow, and whether the pits were filled or unfilled during this period should be factored into the mined land rehabilitation processes.


2019 ◽  
Vol 11 (8) ◽  
pp. 2397 ◽  
Author(s):  
Fuseini Issaka ◽  
Zhen Zhang ◽  
Zhong-Qiu Zhao ◽  
Evans Asenso ◽  
Jiu-Hao Li ◽  
...  

Monitoring nitrogen (N) and phosphorous (P) losses on farmland is essential for the prevention of agricultural non-point source pollution (NPS). This study was conducted on typical dry farmland in southern China to determine the effect of conservation tillage and conventional tillage (CT) on soil physical and chemical properties, nutrient movement, as well as on N and P losses. Four conservation tillage techniques (i.e., no-tillage direct seeding (NTDS), no-tillage transplanting (NTTS), minimum tillage direct seeding (MTDS), and minimum tillage transplanting (MTTS)), as well as one CT technique, were carried out in a randomized complete block design with three replicates each. The results suggest that MTDS and NTDS improved soil physical and chemical properties by ensuring adequate retention of these properties at the 0–20 cm soil depth. Low levels of N and P losses in runoff and drainage water were recorded under NTTS and NTDS compared to CT. Our results, therefore, suggest that conservation tillage approaches, such as MTDS and NTDS, are the most suitable tillage techniques for improving soil nutrients and reducing agricultural N and P losses while providing an eco-friendly and sustainable agricultural practice.


Sign in / Sign up

Export Citation Format

Share Document