Effects of Variable Viscosity and Thermal Conductivity on Steady MHD Slip Flow of Micropolar Fluid over a Vertical Plate

Author(s):  
Bandita Phukan
2012 ◽  
Vol 11 (3) ◽  
pp. 179-191
Author(s):  
Ramprakash Sharma ◽  
Abhay Kumar Jha

We consider unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in slip-flow regime. A uniform magnetic field acts perpendicular to the porous surface which absorbs the micropolar fluids with a suction velocity varying with time. The free stream velocity follows an exponentially increasing or decreasing small perturbation law. Using approximate method the expression for the velocity microrotation, and temperature are obtained.


2013 ◽  
Vol 30 (3) ◽  
pp. 265-275 ◽  
Author(s):  
A. Noghrehabadi ◽  
M. Ghalambaz ◽  
A. Ghanbarzadeh

ABSTRACTThe effects of variable viscosity and thermal conductivity on the natural convection heat transfer over a vertical plate embedded in a porous medium saturated by a nanofluid are investigated. In the nanofluid model, a gradient of nanoparticles concentration because of Brownian motion and thermophoresis forces is taken into account. The nanofluid viscosity and the thermal conductivity are assumed as a function of local nanoparticles volume fraction. The appropriate similarity variables are used to convert the governing partial differential equations into a set of highly coupled nonlinear ordinary differential equations, and then, they numerically solved using the Runge-Kutta-Fehlberg method. The practical range of non- dimensional parameters is discussed. The results show that the range of Lewis number as well as Brownian motion and thermophoresis parameters which were used in previous studies should be reconsidered. The effect of non-dimensional parameters on the boundary layer is examined. The results show that the reduced Nusselt number would increase with increase of viscosity parameter and would decrease with increase of thermal conductivity parameter.


2021 ◽  
Vol 10 (1) ◽  
pp. 128-145
Author(s):  
Amala Olkha ◽  
Amit Dadheech

The unsteady MHD flow of Powell-Eyring fluid with microorganisms due to permeable extending surface which is also inclined, embedded in porous media is acknwledged. We have considered variable fluid property such as variable viscosity, thermal conductivity. For this perspective relevant transformations are exercised to reduce the governing PDE’s corresponding to momentum energy, mass and microorganisms’ profiles to system of ODE’s which are of non-linear nature and are numerically evaluated by MATLAB algorithm using Runge-kutta technique. Tabular annotations including pictorial presentations are comprehensively used to analyse effects caused by physical parameters concerning velocity, energy, mass and microorganisms.The present analysis focuses the study of unsteady MHD slip flow of Powell-Eyring fluid with microorganisms over an inclined permeable stretching sheet with slip conditions which is not avalaible in open literature beforehand. Rising unsteady parameter (A) decreases skin friction coefficient and reverse impact is shown on local Sherwood, Nusselt, and motile microorganisms’ number.


Sign in / Sign up

Export Citation Format

Share Document