scholarly journals Control Policy with Autocorrelated Noise in Reinforcement Learning for Robotics

2015 ◽  
Vol 5 (2) ◽  
pp. 91-95 ◽  
Author(s):  
Paweł Wawrzyński
2021 ◽  
pp. 2150011
Author(s):  
Wei Dong ◽  
Jianan Wang ◽  
Chunyan Wang ◽  
Zhenqiang Qi ◽  
Zhengtao Ding

In this paper, the optimal consensus control problem is investigated for heterogeneous linear multi-agent systems (MASs) with spanning tree condition based on game theory and reinforcement learning. First, the graphical minimax game algebraic Riccati equation (ARE) is derived by converting the consensus problem into a zero-sum game problem between each agent and its neighbors. The asymptotic stability and minimax validation of the closed-loop systems are proved theoretically. Then, a data-driven off-policy reinforcement learning algorithm is proposed to online learn the optimal control policy without the information of the system dynamics. A certain rank condition is established to guarantee the convergence of the proposed algorithm to the unique solution of the ARE. Finally, the effectiveness of the proposed method is demonstrated through a numerical simulation.


2021 ◽  
Author(s):  
Shuzhen Luo ◽  
Ghaith Androwis ◽  
Sergei Adamovich ◽  
Erick Nunez ◽  
Hao Su ◽  
...  

Abstract Background: Few studies have systematically investigated robust controllers for lower limb rehabilitation exoskeletons (LLREs) that can safely and effectively assist users with a variety of neuromuscular disorders to walk with full autonomy. One of the key challenges for developing such a robust controller is to handle different degrees of uncertain human-exoskeleton interaction forces from the patients. Consequently, conventional walking controllers either are patient-condition specific or involve tuning of many control parameters, which could behave unreliably and even fail to maintain balance. Methods: We present a novel and robust controller for a LLRE based on a decoupled deep reinforcement learning framework with three independent networks, which aims to provide reliable walking assistance against various and uncertain human-exoskeleton interaction forces. The exoskeleton controller is driven by a neural network control policy that acts on a stream of the LLRE’s proprioceptive signals, including joint kinematic states, and subsequently predicts real-time position control targets for the actuated joints. To handle uncertain human-interaction forces, the control policy is trained intentionally with an integrated human musculoskeletal model and realistic human-exoskeleton interaction forces. Two other neural networks are connected with the control policy network to predict the interaction forces and muscle coordination. To further increase the robustness of the control policy, we employ domain randomization during training that includes not only randomization of exoskeleton dynamics properties but, more importantly, randomization of human muscle strength to simulate the variability of the patient’s disability. Through this decoupled deep reinforcement learning framework, the trained controller of LLREs is able to provide reliable walking assistance to the human with different degrees of neuromuscular disorders. Results and Conclusion: A universal, RL-based walking controller is trained and virtually tested on a LLRE system to verify its effectiveness and robustness in assisting users with different disabilities such as passive muscles (quadriplegic), muscle weakness, or hemiplegic conditions. An ablation study demonstrates strong robustness of the control policy under large exoskeleton dynamic property ranges and various human-exoskeleton interaction forces. The decoupled network structure allows us to isolate the LLRE control policy network for testing and sim-to-real transfer since it uses only proprioception information of the LLRE (joint sensory state) as the input. Furthermore, the controller is shown to be able to handle different patient conditions without the need for patient-specific control parameters tuning.


2021 ◽  
Vol 33 (1) ◽  
pp. 129-156
Author(s):  
Masami Iwamoto ◽  
Daichi Kato

This letter proposes a new idea to improve learning efficiency in reinforcement learning (RL) with the actor-critic method used as a muscle controller for posture stabilization of the human arm. Actor-critic RL (ACRL) is used for simulations to realize posture controls in humans or robots using muscle tension control. However, it requires very high computational costs to acquire a better muscle control policy for desirable postures. For efficient ACRL, we focused on embodiment that is supposed to potentially achieve efficient controls in research fields of artificial intelligence or robotics. According to the neurophysiology of motion control obtained from experimental studies using animals or humans, the pedunculopontine tegmental nucleus (PPTn) induces muscle tone suppression, and the midbrain locomotor region (MLR) induces muscle tone promotion. PPTn and MLR modulate the activation levels of mutually antagonizing muscles such as flexors and extensors in a process through which control signals are translated from the substantia nigra reticulata to the brain stem. Therefore, we hypothesized that the PPTn and MLR could control muscle tone, that is, the maximum values of activation levels of mutually antagonizing muscles using different sigmoidal functions for each muscle; then we introduced antagonism function models (AFMs) of PPTn and MLR for individual muscles, incorporating the hypothesis into the process to determine the activation level of each muscle based on the output of the actor in ACRL. ACRL with AFMs representing the embodiment of muscle tone successfully achieved posture stabilization in five joint motions of the right arm of a human adult male under gravity in predetermined target angles at an earlier period of learning than the learning methods without AFMs. The results obtained from this study suggest that the introduction of embodiment of muscle tone can enhance learning efficiency in posture stabilization disorders of humans or humanoid robots.


Author(s):  
James D. Cunningham ◽  
Simon W. Miller ◽  
Michael A. Yukish ◽  
Timothy W. Simpson ◽  
Conrad S. Tucker

Abstract We present a form-aware reinforcement learning (RL) method to extend control knowledge from one design form to another, without losing the ability to control the original design. A major challenge in developing control knowledge is the creation of generalized control policies across designs of varying form. Our presented RL policy is form-aware because in addition to receiving dynamic state information about the environment, it also receives states that encode information about the form of the design that is being controlled. In this paper, we investigate the impact of this mixed state space on transfer learning. We present a transfer learning method for extending a control policy to a different design form, while continuing to expose the agent to the original design during the training of the new design. To demonstrate this concept, we present a case study of a multi-rotor aircraft simulation, wherein the designated task is to achieve a stable hover. We show that by introducing form states, an RL agent is able to learn a control policy to achieve the hovering task with both a four rotor and three rotor design at once, whereas without the form states it can only hover with the four rotor design. We also benchmark our method against a test case that removes the transfer learning component, as well as a test case that removes the continued exposure to the original design to show the value of each of these components. We find that form states, transfer learning, and parallel learning all contribute to a more robust control policy for the new design, and that parallel learning is especially important for maintaining control knowledge of the original design.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Gary M. Stump ◽  
Simon W. Miller ◽  
Michael A. Yukish ◽  
Timothy W. Simpson ◽  
Conrad Tucker

Abstract A novel method has been developed to optimize both the form and behavior of complex systems. The method uses spatial grammars embodied in character-recurrent neural networks (char-RNNs) to define the system including actuator numbers and degrees of freedom, reinforcement learning to optimize actuator behavior, and physics-based simulation systems to determine performance and provide (re)training data for the char-RNN. Compared to parametric design optimization with fixed numbers of inputs, using grammars and char-RNNs allows for a more complex, combinatorial infinite design space. In the proposed method, the char-RNN is first trained to learn a spatial grammar that defines the assembly layout, component geometries, material properties, and arbitrary numbers and degrees of freedom of actuators. Next, generated designs are evaluated using a physics-based environment, with an inner optimization loop using reinforcement learning to determine the best control policy for the actuators. The resulting design is thus optimized for both form and behavior, generated by a char-RNN embodying a high-performing grammar. Two evaluative case studies are presented using the design of the modular sailing craft. The first case study optimizes the design without actuated surfaces, allowing the char-RNN to understand the semantics of high-performing designs. The second case study extends the first by incorporating controllable actuators requiring an inner loop behavioral optimization. The implications of the results are discussed along with the ongoing and future work.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Bo Dong ◽  
Yuanchun Li

A novel decentralized reinforcement learning robust optimal tracking control theory for time varying constrained reconfigurable modular robots based on action-critic-identifier (ACI) and state-action value function (Q-function) has been presented to solve the problem of the continuous time nonlinear optimal control policy for strongly coupled uncertainty robotic system. The dynamics of time varying constrained reconfigurable modular robot is described as a synthesis of interconnected subsystem, and continuous time state equation andQ-function have been designed in this paper. Combining with ACI and RBF network, the global uncertainty of the subsystem and the HJB (Hamilton-Jacobi-Bellman) equation have been estimated, where critic-NN and action-NN are used to approximate the optimalQ-function and the optimal control policy, and the identifier is adopted to identify the global uncertainty as well as RBF-NN which is used to update the weights of ACI-NN. On this basis, a novel decentralized robust optimal tracking controller of the subsystem is proposed, so that the subsystem can track the desired trajectory and the tracking error can converge to zero in a finite time. The stability of ACI and the robust optimal tracking controller are confirmed by Lyapunov theory. Finally, comparative simulation examples are presented to illustrate the effectiveness of the proposed ACI and decentralized control theory.


2021 ◽  
Author(s):  
Xinglong Zhang ◽  
Yaoqian Peng ◽  
Biao Luo ◽  
Wei Pan ◽  
Xin Xu ◽  
...  

<div>Recently, barrier function-based safe reinforcement learning (RL) with the actor-critic structure for continuous control tasks has received increasing attention. It is still challenging to learn a near-optimal control policy with safety and convergence guarantees. Also, few works have addressed the safe RL algorithm design under time-varying safety constraints. This paper proposes a model-based safe RL algorithm for optimal control of nonlinear systems with time-varying state and control constraints. In the proposed approach, we construct a novel barrier-based control policy structure that can guarantee control safety. A multi-step policy evaluation mechanism is proposed to predict the policy's safety risk under time-varying safety constraints and guide the policy to update safely. Theoretical results on stability and robustness are proven. Also, the convergence of the actor-critic learning algorithm is analyzed. The performance of the proposed algorithm outperforms several state-of-the-art RL algorithms in the simulated Safety Gym environment. Furthermore, the approach is applied to the integrated path following and collision avoidance problem for two real-world intelligent vehicles. A differential-drive vehicle and an Ackermann-drive one are used to verify the offline deployment performance and the online learning performance, respectively. Our approach shows an impressive sim-to-real transfer capability and a satisfactory online control performance in the experiment.</div>


2021 ◽  
Vol 11 (18) ◽  
pp. 8419
Author(s):  
Jiang Zhao ◽  
Jiaming Sun ◽  
Zhihao Cai ◽  
Longhong Wang ◽  
Yingxun Wang

To achieve the perception-based autonomous control of UAVs, schemes with onboard sensing and computing are popular in state-of-the-art work, which often consist of several separated modules with respective complicated algorithms. Most methods depend on handcrafted designs and prior models with little capacity for adaptation and generalization. Inspired by the research on deep reinforcement learning, this paper proposes a new end-to-end autonomous control method to simplify the separate modules in the traditional control pipeline into a single neural network. An image-based reinforcement learning framework is established, depending on the design of the network architecture and the reward function. Training is performed with model-free algorithms developed according to the specific mission, and the control policy network can map the input image directly to the continuous actuator control command. A simulation environment for the scenario of UAV landing was built. In addition, the results under different typical cases, including both the small and large initial lateral or heading angle offsets, show that the proposed end-to-end method is feasible for perception-based autonomous control.


Sign in / Sign up

Export Citation Format

Share Document