Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume

2014 ◽  
Vol 64 ◽  
pp. 261-269 ◽  
Author(s):  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn ◽  
Athipong Ngamjarurojana ◽  
Arnon Chaipanich
Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3466 ◽  
Author(s):  
Hongbo Li ◽  
Hao Sun ◽  
Wanlong Zhang ◽  
Huiyan Gou ◽  
Qiuning Yang

In this paper, five groups of C40 fly ash and silica fume self-compacting concrete (SCC) mix proportion tests and in-line multi-cavity steel tube bundle self-compacting concrete shear wall axial compression performance tests and numerical simulation are completed and presented. The influence of fly ash and silica fume additions on SCC mechanical properties and the filled in-line multi-cavity steel tube bundle shear wall mechanical properties are analyzed and studied. With an increase in the fly ash content from 10% to 40%, the compressive strength of self-compacting concrete increases firstly and then decreases. When the fly ash content is 30% and the silica fume content is 4%, the compressive strength of the 28 d age self-compacting concrete is the highest and the compressive strength formula of the wrapped curing SCC is proposed. The failure of steel tube bundle is multi-wave buckling failure. As the SCC is most obviously affected by the collar at the corner point of the steel tube bundle, its compressive strength is 110 MPa, and is 96 MPa higher than the concrete at the middle point of the web. The deformation resistance of SCC is obviously enhanced by the confinement effect.


2011 ◽  
Vol 409 ◽  
pp. 249-254
Author(s):  
Prakash Parasivamurthy ◽  
Veena Jawali ◽  
Pramod Aralumallige Venkatakrisna

Concrete is the key material used in construction of various types, from flooring of a dwelling to multi-storied high rise structures, from pathways to an airport runways, from under ground tunnels and deep sea platforms to high-rise chimneys and towers. The greatest challenge in this millennium, especially in developing country like India, it needs to build concrete structures in quicker time, so as to meet high infrastructural demand. In order to achieve this, concrete construction practices will have to undergo a sea-change in the country. The study was focused on development of self-compacting concrete using high volume fly ash, admixed with quary dust and Silica fume. The objective of the study included evaluation of properties, viz. compressive strength, weight change observations in sulphate environment and resistance to chloride ion penetration. Several trial mixes were tested before optimizing the three Self-Compacting Concrete mixes based on binary and ternary blends. The strength variation of individual cubes in each of the mixes has been observed to be in the range of 28 to 46 MPa. Self-compacting concrete using high volume flyash, admixed with quary dust and Silica fume mixes have performed extremely well in aggressive chloride environments. Samples cured for 90 days and exposed to sulphate environment had reduced strengths compared to those cured in tap water, in all the blends. But the percentage reduction is lower in case of ternary blends as compared to control concrete. Keywords: Self-Compacting Concrete (SCC), Compressive Strength, High volume flyash, Quary dust, Silica fume, Supplementary Cementious Material (SCM).


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2187 ◽  
Author(s):  
Hongbo Li ◽  
Hao Sun ◽  
Juncang Tian ◽  
Qiuning Yang ◽  
Qingqing Wan

Based on the urban shantytown renovation project in Hongguang Town, Helan County, Ningxia, in Northwest China, the influence of fly ash and silica fume admixture on the mechanical properties of Self-compacting Concrete (SCC) was tested and analyzed in this work. The experimental tests including compressive strength, splitting strength, triaxial strength and an ultrasonic nondestructive test. Furthermore, the Back Propagation (BP) neural network algorithms were established. The results show that there is an obvious difference between the development law of compressive strength of SCC and that of ordinary concrete. The splitting pressure ratio of SCC is 1/10 to 1/8, while that of ordinary concrete is 1/13 to 1/10. Moreover, the peak strain, peak stress and initial stiffness of SCC increase with the increase of the confining pressure when compressed from three directions. In addition, the ultrasonic amplitude of SCC can reflect the changing laws of its compressive strength. As a conclusion, the addition of fly ash and silica fume increases the splitting pressure ratio of SCC. More importantly, the compressive strength formula for SCC with silica fume and a low content of fly ash is proposed, and the model equation between the amplitude and compressive strength is given. This study provides a reference for the mixture ratio of fly ash and silica fume in the application of SCC.


Author(s):  
V. Sri Ramya Lekhini and Janardhan G

Self-compacting concrete has high workability and flow ability than normal compacted concrete. With its segregation resistance and fluidity, it offers a solution to problems in construction field like lack of skilled labour, inadequate compaction, over compaction, segregation etc. This study includes designing a self-compacting concrete mix which is standardized using its fresh properties with respect to EFNARC (European Federation of National Associations Representing for Concrete)standards. In this study, fly ash is used as partial replacement for cement in concrete. The mix design for M30 grade self-compacting concrete is done as per EFNARC standards. Then various properties of different mixes of M30 grade with 0%, 10%, 20%, 30%, 40% & 50%and 5% of silica fume as partial replacements of cement were compared, and the optimum percentage replacement is obtained at 30% replacement (SCC 30). On determining the optimum percentage replacement of fly ash in cement for M30 grade SCC as SCC 30, various properties such as weight loss and compressive strength and flexural strength of SCC 30 with normal SCC 30 are compared and then finally basalt fibres were added to cement content to asses the performance of concrete with fly ash and fibres as partial replacements of cement. It is found that the there is loss in weight as well as compressive strength and flexural strength of specimen due to adding fly ash and basalt fibres


2016 ◽  
Vol 692 ◽  
pp. 74-81 ◽  
Author(s):  
J.R. Thirumal ◽  
R. Harish

Self – compacting concrete (SCC) is a high – performance concrete that can flow under its own weight to completely fill the form work and self-consolidation without any mechanical vibration. Green concrete is defined as a concrete which uses waste material as at least one of its components, or its production process does not lead to environmental destruction. Such concrete can accelerate the placement, reduce the labor requirements needed for consolidation, finishing and eliminate environmental pollution. One alternative to reduce the cost of self-compacting concrete is the use of mineral admixtures such as silica fume, ground granulated blast furnace slag and fly ash, which is finely, divided materials added to concrete during mixture procedure .When mineral admixtures replace a part of the Portland cement, the cost of self-compacting concrete will be reduced especially if the mineral admixtures are waste or industrial by-product. The various tests for compressive, tensile and flexural strength are determined for various specimens with certain percentages ( 10 % ,30 % ) of replacement like silica fume, fly ash and combination of both fly ash and silica fume. Admixture combination of fly ash and silica fume replacing 30 % results in maximum compressive strength. Admixture of fly ash replacing 10 % results in maximum tensile and flexural strength. In order to make SCC effective, trials can be made with partial replacement of combining silica fume and fly ash to achieve the higher compressive strength. Minimum replacement of fly ash can be investigated to achieve higher tensile and flexural strength .With respect to the above combination of replacement SCC can be dealt with its several specializations to make it effective.


2018 ◽  
Vol 17 (9) ◽  
pp. 2023-2030
Author(s):  
Arnon Chaipanich ◽  
Chalermphan Narattha ◽  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn

2017 ◽  
Vol 865 ◽  
pp. 282-288 ◽  
Author(s):  
Jul Endawati ◽  
Rochaeti ◽  
R. Utami

In recent years, sustainability and environmental effect of concrete became the main concern. Substituting cement with the other cementitious material without decreasing mechanical properties of a mixture could save energy, reduce greenhouse effect due to mining, calcination and limestone refining. Therefore, some industrial by-products such as fly ash, silica fume, and Ground Iron Blast Furnace Slag (GIBFS) would be used in this study to substitute cement and aggregate. This substitution would be applied on the porous concrete mixture to minimize the environmental effect. Slag performance will be optimized by trying out variations of fly ash, silica fume, and slag as cement substitution material in mortar mixture. The result is narrowed into two types of substitution. First, reviewed from the fly ash substitution effect on binder material, highest compressive strength 16.2 MPa was obtained from mixture composition 6% fly ash, 3% silica fume and 17% grinding granular blast-furnace slag. Second, reviewed from slag types as cement substitution and silica fume substitution, highest compressive strength 15.2 MPa was obtained from mortar specimens with air-cooled blast furnace slag. It composed with binder material 56% Portland composite cement, 15% fly ash, 3% silica fume and 26% air-cooled blast furnace slag. Considering the cement substitution, the latter mixture was chosen.


Sign in / Sign up

Export Citation Format

Share Document