scholarly journals Analysis of the Aesthetic Improvement and High Efficiency of Color PV Module Based on Dot Pattern

2021 ◽  
Vol 41 (4) ◽  
pp. 39-47
Author(s):  
Daesung Kim ◽  
Yeonwon Yang ◽  
Boyeon Ryu ◽  
Mingyu Kim ◽  
Jin Ju ◽  
...  
2011 ◽  
Vol 26 (3) ◽  
pp. 897-909 ◽  
Author(s):  
Zhigang Liang ◽  
Rong Guo ◽  
Jun Li ◽  
Alex Q. Huang

2021 ◽  
Vol 13 (14) ◽  
pp. 7689
Author(s):  
Diego Alejandro Herrera-Jaramillo ◽  
Elkin Edilberto Henao-Bravo ◽  
Daniel González González Montoya ◽  
Carlos Andrés Ramos-Paja ◽  
Andrés Julián Saavedra-Montes

Solar energy is a source of sustainable energy and its optimal use depends on the efficiency and reliability of PV systems. Dual active bridge converters are a solution to interface PV modules with the grid or high voltage requirement applications due to the high voltage-conversion-ratio and high efficiency provided by such a converter. The three main contributions of this work are: an extensive mathematical model of a DAB converter connected to a PV module including protection diodes, which is intended to design non-linear controllers, an explicit linearized version of the model, which is oriented to design traditional control systems; and a detailed and replicable application example of the model focused on maximizing the power extraction from a PV system. The modeling approach starts with the differential equations of the PV system; however, only the fundamental and average components of each signal is used to represent it. The control-oriented model is validated using a detailed circuital simulation. First, through the comparison of frequency and time diagrams of the proposed model and a detailed one; and then, through the simulation of the PV system in a realistic application case. PV voltage regulation and maximum power extraction are confirmed in simulation results.


Author(s):  
Mohd Afzanizam Mohd Rosli ◽  
Irfan Alias Farhan Latif ◽  
Muhammad Zaid Nawam ◽  
Mohd Noor Asril Saadun ◽  
Hasila Jarimi ◽  
...  

The temperature distribution across the photovoltaic (PV) module in most cases is not uniform, leading to regions of hotspots. The cells in these regions perform less efficiently, leading to an overall lower PV module efficiency. They can also be permanently damaged due to high thermal stresses. To enable the high-efficiency operation and a longer lifetime of the PV module, the temperatures must not fluctuate wildly across the PV module. In this study, a custom absorber is designed based on literature to provide a more even temperature distribution across the PV module. This design is two standard sets of spiral absorbers connected. This design is relatively less complicated for this reason and it allows room for adjusting the pipe spacing without much complication. The absorber design is tested via computational fluid dynamics (CFD) simulation using ANSYS Fluent 19.2, and the simulation model is validated by an experimental study with the highest percentage error of 9.44%. The custom and the serpentine absorber utilized in the experiment are simulated under the same operating conditions having water as the working fluid. The custom absorber design is found to have a more uniform temperature distribution on more areas of the PV module as compared to the absorber design utilized in the experiment, which leads to a lower average surface temperature of the PV module. This results in an increase in thermal and electrical efficiency of the PV module by 3.21% and 0.65%, respectively.


2019 ◽  
Vol 8 (4) ◽  
pp. 10843-10846

Solar irradiation is the primary input for the solar PV module. Different types of PV module are used to get high efficiency such as polycrystalline, monocrystalline and amorphous PV module . Among all module polycrystalline PV cell is the most reliable one. Two valuable inputs of a solar PV cell are solar irradiation and temperature. For temperature, solar PV material is very sensitive. However, solar irradiation has many types of wavelengths, and each wavelength has a different effect on solar cell because each wavelength has different energy frequency. Energy frequency is the primary term which affects the output of PV panel.so in this paper two types of experimental analysis has done to know the effect of the colour spectrum, and another experiment has done to know the effect of different types of plastic on PV panel. The experimental data used to verify the efficiency and output power of the system. The results show how the output power and efficiency of PV affected by these two factors.


2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
S. W. Glunz

The current cost distribution of a crystalline silicon PV module is clearly dominated by material costs, especially by the costs of the silicon wafer. Therefore cell designs that allow the use of thinner wafers and the increase of energy conversion efficiency are of special interest to the PV industry. This article gives an overview of the most critical issues to achieve this aim and of the recent activities at Fraunhofer ISE and other institutes.


Sign in / Sign up

Export Citation Format

Share Document