Development of high-gain high-efficiency grid-connected inverter for PV Module

Author(s):  
Omar Abdel-Rahim ◽  
Mohamed Orabi ◽  
Mahrous E. Ahmed
Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1802
Author(s):  
Eduardo Martinez-de-Rioja ◽  
Daniel Martinez-de-Rioja ◽  
Rafael López-Sáez ◽  
Ignacio Linares ◽  
Jose A. Encinar

This paper presents two designs of high-efficiency polarizer reflectarray antennas able to generate a collimated beam in dual-circular polarization using a linearly polarized feed, with application to high-gain antennas for data transmission links from a Cubesat. First, an 18 cm × 18 cm polarizer reflectarray operating in the 17.2–22.7 GHz band has been designed, fabricated, and tested. The measurements of the prototype show an aperture efficiency of 52.7% for right-handed circular polarization (RHCP) and 57.3% for left-handed circular polarization (LHCP), both values higher than those previously reported in related works. Then, a dual-band polarizer reflectarray is presented for the first time, which operates in dual-CP in the frequency bands of 20 GHz and 30 GHz. The proposed antenna technology enables a reduction of the complexity and cost of the feed chain to operate in dual-CP, as a linear-to-circular polarizer is no longer required. This property, combined with the lightweight, flat profile and low fabrication cost of printed reflectarrays, makes the proposed antennas good candidates for Cubesat applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yu Zhai ◽  
Ding Xu ◽  
Yan Zhang

This paper presents a lightweight, cost-efficient, wideband, and high-gain 3D printed parabolic reflector antenna in the Ka-band. A 10 λ reflector is printed with polylactic acid- (PLA-) based material that is a biodegradable type of plastic, preferred in 3D printing. The reflecting surface is made up of multiple stacked layers of copper tape, thick enough to function as a reflecting surface (which is found 4 mm). A conical horn is used for the incident field. A center-fed method has been used to converge the energy in the broadside direction. The proposed antenna results measured a gain of 27.8 dBi, a side lobe level (SLL) of −22 dB, and a maximum of 61.2% aperture efficiency (at 30 GHz). A near-field analysis in terms of amplitude and phase has also been presented which authenticates the accurate spherical to planar wavefront transformation in the scattered field.


2018 ◽  
Vol 7 (2.6) ◽  
pp. 168
Author(s):  
Madhukant Patel ◽  
Veerendra Singh Jadaun ◽  
Kanhiya Lal ◽  
Piyush Kuchhal

This paper presents design a High Gain Small Size Microstrip Patch Antenna for X-Band applications such as Moving target RADAR sensor, Motion detector, Microwave camera, Ground Penetration RADAR sensors, wall penetration scanners and many medical applications. Now we have to selected circular geometry of micro strip patch antenna because circular geometry overcomes edge effect of antenna. The proposed antenna is designed to operate for X-band at the centre frequency of 10 GHz. The proposed Circular patch antenna is compact and easy to body mount with a high efficiency. The compactness makes it a better choice as compare with other antenna in the X-band. The proposed antenna shows a very sharp return loss of -46 dB at 10 GHz having narrow pattern with a good gain of 4.7 dBi. This enables its use in high directional applications. The paper represents the designing steps, and the simulation result obtained. The software used here for this circular shaped microstrip antenna is IE3D. Various parameters such as gain, power, radiation pattern, and S11 of the antenna are mentioned.


Author(s):  
Getzial Anbu Mani ◽  
A. K. Parvathy

<p>Boost converters of high gain are used for photo voltaic systems to obtain high efficiency. These high gain Boost converters gives increased output voltage for a low input produces high outputs for low input voltage. The High gain boost converters have the following merits. Conduction losses input current ripple and stress across the switches is reduced while the efficiency is increases. The high gain of the converters with the above said merits is obtained by changing the duty cycle of switches accordingly .In this paper a boost converter working with interleaved concept along with a additional Nstage voltage Multiplier has been carried out by simulation using MATLAB/ simulink and the mathematical modeling of various parameters is also done.</p>


Sign in / Sign up

Export Citation Format

Share Document