scholarly journals Relationship between Hydraulic Conductivity and Electrical Conductivity in Sands

2015 ◽  
Vol 31 (6) ◽  
pp. 45-58
Author(s):  
Jinwook Kim ◽  
Hyunwook Choo ◽  
Changho Lee ◽  
Woojin Lee
Soil Research ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 23 ◽  
Author(s):  
Mohammad Reza Neyshabouri ◽  
Mehdi Rahmati ◽  
Claude Doussan ◽  
Boshra Behroozinezhad

Unsaturated soil hydraulic conductivity K is a fundamental transfer property of soil but its measurement is costly, difficult, and time-consuming due to its large variations with water content (θ) or matric potential (h). Recently, C. Doussan and S. Ruy proposed a method/model using measurements of the electrical conductivity of soil core samples to predict K(h). This method requires the measurement or the setting of a range of matric potentials h in the core samples—a possible lengthy process requiring specialised devices. To avoid h estimation, we propose to simplify that method by introducing the particle-size distribution (PSD) of the soil as a proxy for soil pore diameters and matric potentials, with the Arya and Paris (AP) model. Tests of this simplified model (SM) with laboratory data on a broad range of soils and using the AP model with available, previously defined parameters showed that the accuracy was lower for the SM than for the original model (DR) in predicting K (RMSE of logK = 1.10 for SM v. 0.30 for DR; K in m s–1). However, accuracy was increased for SM when considering coarse- and medium-textured soils only (RMSE of logK = 0.61 for SM v. 0.26 for DR). Further tests with 51 soils from the UNSODA database and our own measurements, with estimated electrical properties, confirmed good agreement of the SM for coarse–medium-textured soils (<35–40% clay). For these textures, the SM also performed well compared with the van Genuchten–Mualem model. Error analysis of SM results and fitting of the AP parameter showed that most of the error for fine-textured soils came from poorer adequacy of the AP model’s previously defined parameters for defining the water retention curve, whereas this was much less so for coarse-textured soils. The SM, using readily accessible soil data, could be a relatively straightforward way to estimate, in situ or in the laboratory, K(h) for coarse–medium-textured soils. This requires, however, a prior check of the predictive efficacy of the AP model for the specific soil investigated, in particular for fine-textured/structured soils and when using previously defined AP parameters.


Soil Research ◽  
2008 ◽  
Vol 46 (1) ◽  
pp. 37 ◽  
Author(s):  
M. R. Sargeant ◽  
C. Tang ◽  
P. W. G. Sale

Landholder observations indicate that the growth of Distichlis spicata in saline discharge sites improves the soil condition. An extensive soil sampling survey was conducted at the Wickepin field site in Western Australia, where D. spicata had been growing for 8 years, to test the hypothesis that this halophytic grass will make improvements in chemical and physical properties of the soil. Soil measurements included saturated hydraulic conductivity, water-stable aggregates, root length and dry weight, electrical conductivity, pH, and soil nitrogen and carbon. Results confirm that marked differences in soil properties occurred under D. spicata. For example, a 12-fold increase in saturated hydraulic conductivity occurred where D. spicata had been growing for 8 years, compared to adjacent control soil where no grass had been growing. There were also improvements in aggregate stability, with the most notable improvements in the top 0.10 m of soil, again with the greatest improvements occurring where 8 years of growth had occurred. Soil nitrogen and carbon increased under the sward, with the biggest increases occurring in the top 0.10 m of soil. Electrical conductivity measurements were more variable, mostly due to the large spatial and temporal variation encountered. However, the findings generally support the proposition that the growth of D. spicata does not lead to an accumulation of salt within the rooting zone.


Soil Research ◽  
1981 ◽  
Vol 19 (3) ◽  
pp. 361 ◽  
Author(s):  
D Subhashini ◽  
BD Kaushik

Algal growth resulted in significant reductions in pH, electrical conductivity, exchangeable sodium and in hydraulic conductivity and aggregation status of the soil. There was a significant increase in the total nitrogen content of the soil due to algal growth. Two out of the three inoculated species of algae could establish in the pots along with the indigenous algal flora. Combination of gypsum and algal application were found to have appreciable reclamative properties, and the possibility of using algae as a biological input for the reclamation of sodic soils has been indicated.


1969 ◽  
Vol 41 (1) ◽  
pp. 25-34
Author(s):  
Juan A. Bonnet ◽  
Eduardo J. Brenes

1. The area of soils surveyed in Lajas Valley was 24,656 acres. 2. The soils were classified into normal, saline, saline-alkali, and non- saline-alkali at depths of 0 to 8, 8 to 24, 24 to 48, and 48 to 72 inches, respectively. 3. A large percentage of normal soils was found in the upper soil layer and of saline-alkali soils in the lower layers. 4. Normal soils occupied about 86 percent of the surface area to a depth of 8 inches and about 63 percent at a depth of 8 to 24 inches. 5. Soils with a salinity problem increased from 9 percent at a depth of 8 inches to 28.3, 58.8 and 68.5 percent, respectively, at depths of 8 to 24, 24 to 48, and 48 to 72 inches. 6. The soils with a salinity problem were largely of the saline-alkali class. 7. In four soil-profile samples taken from Lajas Valley, the saturation percentage varied from 58 to 191, the electrical conductivity from 0.8 to 28.4 millimhos per centimeter, the exchangeable-sodium percentage from 2.2 to 46.0, the soil pH from 8.1 to 8.9, the content of gypsum from 0 to 21.9 tons per acre-foot, the gypsum requirement from 0 to 23.8 tons per acre-foot, and the hydraulic conductivity from less than 0.005 to 6.24 inches of water per hour. Higher gypsum contents were found in the deep subsoil layers of two soils (profiles 1 and 4). Amounts of gypsum varying from 9.9 to 20.3 tons per acre-foot of depth, are required for the reclamation of the surface layers of these two profiles. In general, the hydraulic- conductivity values show that the soil-surface layers are more permeable than the subsoil layers. 8. The procedure and methods used in this paper were found to be accurate, simple, rapid, and practical. They are recommended for the coordination of data related to the classification and reclamation of soils affected by salinity problems in the different countries of the world.


2019 ◽  
Vol 32 (1) ◽  
pp. 222-233
Author(s):  
Iug Lopes ◽  
Abelardo Antônio de Assunção Montenegro

ABSTRACT Evaluating spatial variability of hydraulic properties and salinity of soils is important for an adequate agricultural management of alluvial soils, and protection of riparian vegetation. Thus, the objective of this work was to evaluate the accuracy of geophysical techniques for indirect measurements of apparent electrical conductivity (ECa), using an electromagnetic induction equipment (EM38®), and soil physical hydraulic parameters and their spatial interrelations. The study was carried out at the Advanced Research Unit of the UFRPE, in the Brígida River Basin, in Panamirim, state of Pernambuco, Brazil, in the second half of 2016. This river had a 100 m wide riparian forest strip transversely to the river bank on both sides of the river. A regular 20×10 m grid with 80 points was used to evaluate the soil hydraulic conductivity and ECa. The geostatistics showed the spatial dependence and the dependence of the soil attributes, their spatialization, and precise mapping through indirect readings. Most of the variability (86%) in soil electrical conductivity was explained by indirect readings using the EM38®. Ranges of 80 m, 380 m, and 134 m were found for soil moisture, ECa, and hydraulic conductivity, respectively, presenting strong spatial dependence. The results showed the importance of riparian forests to the maintenance of soil moisture and porosity to the improvement of soil water infiltration capacity even under severe water deficit conditions and soil subsurface layers.


Sign in / Sign up

Export Citation Format

Share Document