Hydrodynamic Aspects on Three-dimensional Effects of Vertical-axis Tidal Stream Turbine

Author(s):  
B.S. Hyun ◽  
J.K. Lee
Author(s):  
Seiji Shimizu ◽  
Masayuki Fujii ◽  
Tetsuya Sumida ◽  
Kenji Sasa ◽  
Yasuhiro Kimura ◽  
...  

Darrieus type vertical axis water turbine in a cylindrical shape which consists of some straight blades is simple, efficient and easy to install a generator upward. However, it has difficulty in starting revolution. As a method to cope with such a problem, a starting revolution assist mechanism was fabricated and set on a prototype of the turbine. Assist experiment was carried out. It resulted helping well the starting revolution. The improved prototype of tidal stream turbine can generate 1.4 W under a water flow of 1 m/s where impossible to self-start. Besides that, Darrieus water turbine’s generating torque property was investigated by the famous original experimental data of lift coefficient Cl and drag coefficient Cd for straight blades of NACA63 3-018 cross section. It was found that setting two or four blades in a turbine would help to improve the difficulty of starting revolution.


Author(s):  
Xin Wang ◽  
Xianwu Luo ◽  
Baotang Zhuang ◽  
Weiping Yu ◽  
Hongyuan Xu

Recent years, the vertical-axis water turbine (VAWT) is widely used for converting the kinetic energy of the moving water in open flow and with low static head like river and tidal sites. Conventional numerical methods such as disk-stream tube method and vortex panel method have some drawbacks to predict the behaviors and characteristics of the vertical-axis tidal stream turbine. This paper had treated the hydrodynamic performance of a VAWT model experimentally and numerically. Based on the present research, a 6-DOF method coupled with CFD suitable to simulate the rotor movement and predict the hydraulic performance for a VAWT was proposed. Compared with the experiments, the numerical results for the performance of the VAWT model were reasonable. It is also noted that there is a maximum power coefficient near tip speed ratio of 2.5 for the test model.


Eng ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 340-355
Author(s):  
Hassan el Sheshtawy ◽  
Ould el Moctar ◽  
Satish Natarajan

A method was developed to perform shape optimization of a tidal stream turbine hydrofoil using a multi-objective genetic algorithm. A bezier curve parameterized the reference hydrofoil profile NACA 63815. Shape optimization of this hydrofoil maximized its lift-to-drag ratio and minimized its pressure coefficient, thereby increasing the turbines power output power and improving its cavitation characteristics. The Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) was employed to perform the shape optimization. A comparative study of two- and three-dimensional optimizations was carried out. The effect of varying the angle of attack on the quality of optimized results was also studied. Predictions based on two-dimensional panel method results were also studied. Predictions based on a two-dimensional panel method and on a computational fluid dynamics code were compared to experimental measurements.


Author(s):  
Hassan El Sheshtawy ◽  
Ould el Moctar ◽  
Satish Natarajan

A method was developed to perform shape optimization of a tidal stream turbine hydrofoil using a multi-objective genetic algorithm. A bezier curve parameterized the refrence hydrofoil profoil NACA 63815. Shape optimization of this hydrofoil maximized its lift-to-darg ratio and minimized its pressure coefficient, thereby increasing the turbines power output power and improving its cavitation characteristics. The Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) was employed to perform the shape optimization. A comparative study of two-and three-dimensional optimizations was carried out. The effect of varing the angle of attack on the quality of optimized results was also studied. predictions based on two-dimensional panel method results was also studied. Preditions based on a two-dimensional panel method and on a computational fluid dynamics code were compared to experimental measurments.


2006 ◽  
Vol 65 (6) ◽  
pp. 429-439 ◽  
Author(s):  
Keisuke Kushiro ◽  
Jun Maruta

Sign in / Sign up

Export Citation Format

Share Document