Effects of partial slip on the peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel

Author(s):  
Safia Akram ◽  
S. Nadeem
2010 ◽  
Vol 65 (6-7) ◽  
pp. 483-494 ◽  
Author(s):  
Sohail Nadeem ◽  
Safia Akram

In the present paper, we have studied the influence of heat transfer and magnetic field on a peristaltic transport of a Jeffrey fluid in an asymmetric channel with partial slip. The complicated Jeffrey fluid equations are simplified using the long wave length and low Reynolds number assumptions. In the wave frame of reference, an exact and closed form of Adomian solution is presented. The expressions for pressure drop, pressure rise, stream function, and temperature field have been calculated. The behaviour of different physical parameters has been discussed graphically. The pumping and trapping phenomena of various wave forms (sinusoidal, multisinusoidal, square, triangular, and trapezoidal) are also studied.


2009 ◽  
Vol 64 (9-10) ◽  
pp. 559-567 ◽  
Author(s):  
Sohail Nadeem ◽  
Safia Akram

In the present analysis, we have modeled the governing equations of a two dimensional hyperbolic tangent fluid model. Using the assumption of long wavelength and low Reynolds number, the governing equations of hyperbolic tangent fluid for an asymmetric channel have been solved using the regular perturbation method. The expression for pressure rise has been calculated using numerical integrations. At the end, various physical parameters have been shown pictorially. It is found that the narrow part of the channel requires a large pressure gradient, also in the narrow part the pressure gradient decreases with the increase in Weissenberg number We and channel width d.


2021 ◽  
Vol 14 (20) ◽  
pp. 1677-1688
Author(s):  
N B ​ Naduvinamani ◽  
◽  
Anita Siddayya Guttedar ◽  
Laxmi Devindrappa

Sign in / Sign up

Export Citation Format

Share Document