scholarly journals Anaerobic Decolorization of Sulfonated Azo Dyes by Sulfate Reducing Bacteria

Author(s):  
V. Sreelekshmi ◽  
Salom Gnana Thanga Vincent

Aim: The present study was done to find out ability of sulfate reducing bacteria to reduce sulfonated azo dyes found in the textile effluent. Study Design: Isolate Sulfate reducing bacterial strains from dye contaminated soil samples, inoculate and incubate dye supplemented media under static anaerobic condition and measure the decolorization using UV-VIS spectrophotometer. Place and Duration of Study: The samples were collected from Travancore textiles Nemom, Thiruvananthapuram, Kerala, India. Laboratory analysis were performed at Department of Environmental Sciences, University of Kerala, Thiruvananthapuram, India. The study was done for a period of six months. Methodology: The isolated sulfate reducing bacterial (SRB) strains were screened to test the tolerance to selected sulfonated azo dye Direct blue 71. The decolorization assay was done in Postgate media and an aliquot of samples (3mL) were withdrawn periodically, centrifuged at 10,000rpm for 15min. The supernatant was used to assay azo dye reduction by measuring residual absorption at the wavelength 594 nm of the Direct Blue 71. Results were compared with the uninoculated control. The optimization of physicochemical conditions for effective decolorization of the selected bacterial strains was studied at different environmental conditions (pH, temperature, concentration and added co-substrates such as sodium acetate, lactate and mannitol). The biodegradation of sulfonated azo dye was assessed by characterizing the metabolites formed after degradation by Fourier Transform Infrared Spectroscopy (FT-IR). FT-IR analysis revealed only decolorization had occurred without degradation of the dye during the short incubation period of one week. Conclusion: Degradation of azo dyes and other recalcitrant compounds by obligate anaerobes such as sulfate reducing bacteria is a slow process. Hence, extension of incubation period is necessary for the effective and complete degradation of the dye by SRB.

2002 ◽  
Vol 97 (3) ◽  
pp. 147-164 ◽  
Author(s):  
Patricia Esteves Diniz ◽  
Ana Teresa Lopes ◽  
Ana Rosa Lino ◽  
Maria Luisa Serralheiro

2015 ◽  
Vol 64 (2) ◽  
pp. 107-114 ◽  
Author(s):  
IVAN V. KUSHKEVYCH

Intestinal sulfate-reducing bacteria reduce sulfate ions to hydrogen sulfide causing inflammatory bowel diseases of humans and animals. The bacteria consume lactate as electron donor which is oxidized to acetate via pyruvate in process of the dissimilatory sulfate reduction. Pyruvate-ferredoxin oxidoreductase activity and the kinetic properties of the enzyme from intestinal sulfate-reducing bacteria Desulfovibrio piger and Desulfomicrobium sp. have never been well-characterized and have not been yet studied. In this paper we present for the first time the specific activity of pyruvate-ferredoxin oxidoreductase and the kinetic properties of the enzyme in cell-free extracts of both D. piger Vib-7 and Desulfomicrobium sp. Rod-9 intestinal bacterial strains. Microbiological, biochemical, biophysical and statistical methods were used in this work. The optimal temperature (+35°C) and pH 8.5 for enzyme reaction were determined. The spectral analysis of the puri- fied pyruvate-ferredoxin oxidoreductase from the cell-free extracts was demonstrated. Analysis of the kinetic properties of the studied enzyme was carried out. Initial (instantaneous) reaction velocity (V0), maximum amount of the product of reaction (Pmax), the reaction time (half saturation period) and maximum velocity of the pyruvate-ferredoxin oxidoreductase reaction (V ) were defined. Michaelis constants (Km) of the enzyme reaction were calculated for both intestinal bacterial strains. The studies of the kinetic enzyme properties in the intestinal sulfate-reducing bacteria strains in detail can be prospects for clarifying the etiological role of these bacteria in the development of inflammatory bowel diseases.


2015 ◽  
Vol 84 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Ivan Kushkevych ◽  
Roman Fafula ◽  
Tomáš Parák ◽  
Milan Bartoš

The aim of our work was to study Na+/K+-activated Mg2+-dependent ATPase activity in cell-free extracts of the sulfate-reducing bacteriaDesulfovibrio pigerVib-7 andDesulfomicrobiumsp. Rod-9 isolated from the human large intestine, and to carry out the kinetic analysis of the enzyme reaction. The maximum ATPase activity for both bacterial strains at +35 ºC was determined. The highest activities of the studied enzyme in the cell-free extracts ofD. pigerVib-7 at pH 7.0 andDesulfomicrobiumsp. Rod-9 at pH 6.5 were measured. Based on experimental data, the analysis of kinetic properties of the ATP-hydrolase reaction by the studied bacteria was carried out. The enzyme activity, initial (instantaneous) reaction rate (V0) and maximum rate of the ATPase reaction (Vmax) was significantly higher inD. pigerVib-7 cells than inDesulfomicrobiumsp. Rod-9. Michaelis constants (Km) of the enzyme reaction for both bacterial strains were determined.


2014 ◽  
Vol 3 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Ivan V Kushkevych ◽  
Roman V Fafula ◽  
Halyana L Antonyak

Catalase activity of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9 isolated from the human large intestine was studied. The high activity of the enzyme in cell-free extracts of both bacterial strains was determined (1745.21±154.67 and 873.11±72.23 U×mg-1 protein for D. piger Vib-7 and Desulfomicrobium sp. Rod-9, respectively). The effect of different temperature and pH as well as H2O2 concentration and time of incubation on the catalase activity in the cell-free extracts of D. piger Vib-7 and Desulfomicrobium sp. Rod-9 were examined. The maximum catalase activity for both bacterial strains at +30ºC temperature was determined. The highest activity of the studied enzyme in the cell-free extracts of D. piger Vib-7 at pH 7.5 and Desulfomicrobium sp. Rod-9 at pH 7.0 was measured. Based on experimental data, the analysis of the kinetic properties of the catalase by the studied bacteria was carried out. Increasing of hydrogen peroxide concentrations from 0.5 to 5.0 mM causes a monotonic rise of studied enzyme activity and the activity was maintained on an unchanged level (plateau) under substrate concentrations over 5.0 mM. The catalase activity, initial (instantaneous) reaction rate (V0) and maximum rate of the catalase reaction (Vmax) were significantly higher in D. piger Vib-7 than in Desulfomicrobium sp. Rod-9 cells. Michaelis constants (Km) of the catalase reaction were 8.01±0.77 and 10.33±0.98 mM for D. piger Vib-7 and Desulfomicrobium sp. Rod-9, respectively. DOI: http://dx.doi.org/10.3329/mh.v3i1.19776 Microbes and Health, June 2014. 3(1): 15-20


2014 ◽  
Vol 912-914 ◽  
pp. 1969-1972
Author(s):  
Yan Yun Zhu ◽  
Ting Liu ◽  
Jun Zhang

Sulfate reducing bacteria were screened from the soil of Anhe tailing pond in Baoji in China. 22 Sulfate reducing bacterial strains were isolatedand their tolerance ability to cadmium and sulfate reduction capability were determined by nephelometry and barium sulfate precipitation, respectively. One strain named STP2-1-5 with higher sulfate reducing capacity were isolated and identified by 16S rRNA sequencing. Then it was treated by using Dielectric Barrier Discharge (DBD) plasma mutagenesis and their mutants called STP2-1-5(2) and STP2-1-5(4) were obtained. The datum showed that their sulfate reduction capacity increased by 0.1855 and 0.4820 than original bacteria respectively. STP2-1-5(2) and STP2-1-5(4) might be used in the cadmium contaminated soil remediation.


2020 ◽  
Vol 82 (5) ◽  
pp. 11-20
Author(s):  
D.R. Abdulina ◽  
◽  
L.M. Purish ◽  
G.O. Iutynska ◽  
◽  
...  

The studies of the carbohydrate composition of the sulfate-reducing bacteria (SRB) biofilms formed on the steel surface, which are a factor of microbial corrosion, are significant. Since exopolymers synthesized by bacteria could activate corrosive processes. The aim of the study was to investigate the specificity of commercial lectins, labeled with colloidal gold to carbohydrates in the biofilm exopolymeric matrix produced by the corrosive-relevant SRB strains from man-caused ecotopes. Methods. Microbiological methods (obtaining of the SRB biofilms during cultivation in liquid Postgate B media under microaerophilic conditions), biochemical methods (lectin-binding analysis of 10 commercial lectins, labeled with colloidal gold), transmission electron microscopy using JEM-1400 JEOL. Results. It was shown using transmission electron microscopy that the binding of lectins with carbohydrates in the biofilm of the studied SRB strains occurred directly in the exopolymerіс matrix, as well as on the surfaces of bacterial cells, as seen by the presence of colloidal gold particles. For detection of the neutral carbohydrates (D-glucose and D-mannose) in the biofilm of almost all studied bacterial strains PSA lectin was the most specific. This lectin binding in biofilms of Desulfotomaculum sp. К1/3 and Desulfovibrio sp. 10 strains was higher in 90.8% and 94.4%, respectively, then for ConA lectin. The presence of fucose in the SRB biofilms was detected using LABA lectin, that showed specificity to the biofilm EPS of all the studied strains. LBA lectin was the most specific to N-аcetyl-D-galactosamine for determination of amino sugars in the biofilm. The amount of this lectin binding in D. vulgaris DSM644 biofilm was 30.3, 10.1 and 9.3 times higher than SBA, SNA and PNA lectins, respectively. STA, LVA and WGA lectins were used to detect the N-acetyl-Dglucosamine and sialic acid in the biofilm. WGA lectin showed specificity to N-acetyl-D-glucosamine in the biofilm of all the studied SRB; maximum number of bounded colloidal gold particles (175 particles/μm2) was found in the Desulfotomaculum sp. TC3 biofilm. STA lectin was interacted most actively with N-acetyl-D-glucosamine in Desulfotomaculum sp. TC3 and Desulfomicrobium sp. TC4 biofilms. The number of bounded colloidal gold particles was in 9.2 and 7.4 times higher, respectively, than using LVA lectin. The lowest binding of colloidal gold particles was observed for LVA lectin. Conclusions. It was identified the individual specificity of the 10 commercial lectins to the carbohydrates of biofilm matrix on the steel surface, produced by SRB. It was estimated that lectins with identical carbohydrates specificity had variation in binding to the biofilm carbohydrates of different SRB strains. Establishing of the lectin range selected for each culture lead to the reduction of the scope of studies and labor time in the researching of the peculiarities of exopolymeric matrix composition of biofilms formed by corrosiverelevant SRB.


2017 ◽  
Vol 28 (1-2) ◽  
pp. 84-95
Author(s):  
O. M. Moroz ◽  
S. O. Hnatush ◽  
Ch. I. Bohoslavets ◽  
T. M. Hrytsun’ ◽  
B. M. Borsukevych

Sulfate reducing bacteria, capable to reductive transformation of different nature pollutants, used in biotechnologies of purification of sewage, contaminated by carbon, sulfur, nitrogen and metal compounds. H2S formed by them sediment metals to form of insoluble sulfides. Number of metals can be used by these microorganisms as electron acceptors during anaerobic respiration. Because under the influence of metal compounds observed slowing of bacteria metabolism, selection isolated from technologically modified ecotops resistant to pollutions strains is important task to create a new biotechnologies of purification. That’s why the purpose of this work was to study the influence of potassium dichromate, present in medium, on reduction of sulfate and nitrate ions by sulfate reducing bacteria Desulfovibrio desulfuricans IMV K-6, Desulfovibrio sp. Yav-6 and Desulfovibrio sp. Yav-8, isolated from Yavorivske Lake, to estimate the efficiency of possible usage of these bacteria in technologies of complex purification of environment from dangerous pollutants. Bacteria were cultivated in modified Kravtsov-Sorokin medium without SO42- and FeCl2×4H2O for 10 days. To study the influence of K2Cr2O7 on usage by bacteria SO42- or NO3- cells were seeded to media with Na2SO4×10H2O or NaNO3 and K2Cr2O7 at concentrations of 1.74 mM for total content of electron acceptors in medium 3.47 mM (concentration of SO42- in medium of standard composition). Cells were also seeded to media with 3.47 mM Na2SO4×10H2O, NaNO3 or K2Cr2O7 to investigate their growth in media with SO42-, NO3- or Cr2O72- as sole electron acceptor (control). Biomass was determined by turbidymetric method, content of sulfate, nitrate, dichromate, chromium (III) ions, hydrogen sulfide or ammonia ions in cultural liquid – by spectrophotometric method. It was found that K2Cr2O7 inhibits growth (2.2 and 1.3 times) and level of reduction by bacteria sulfate or nitrate ions (4.2 and 3.0 times, respectively) at simultaneous addition into cultivation medium of 1.74 mM SO42- or NO3- and 1.74 mM Cr2O72-, compared with growth and level of reduction of sulfate or nitrate ions in medium only with SO42- or NO3- as sole electron acceptor. Revealed that during cultivation of bacteria in presence of equimolar amount of SO42- or NO3- and Cr2O72-, last used by bacteria faster, content of Cr3+ during whole period of bacteria cultivation exceeded content H2S or NH4+. K2Cr2O7 in medium has most negative influence on dissimilatory reduction by bacteria SO42- than NO3-, since level of nitrate ions reduction by cells in medium with NO3- and Cr2O72- was a half times higher than level of sulfate ions reduction by it in medium with SO42- and Cr2O72-. The ability of bacteria Desulfovibrio sp. to priority reduction of Cr2O72- and after their exhaustion − NO3- and SO42- in the processes of anaerobic respiration can be used in technologies of complex purification of environment from toxic compounds.


2016 ◽  
Vol 14 (3) ◽  
pp. 557-561
Author(s):  
Nguyễn Thị Yên ◽  
Kiều Thị Quỳnh Hoa

Lead contaminated wastewater negatively impacts to living organisms as well as humans. In recent years, a highly promising biological process using the anaerobic production of sulfide ions by sulfate-reducing bacteria has presented itself as an alternative option for the removal of lead. This process is based on microbial utilization of electron donors, such as organic compounds (carbon sources), and sulfate as the terminal electron acceptor for sulfide production. The biogenic hydrogen sulfide reacts with dissolved heavy metals to form insoluble metal sulfide precipitates Removal of lead by an enriched consortium of sulfate-reducing bacteria (DM10) was evaluated sulfate reduction, sulfide production and lead precipitation. Four parallel anaerobic continuous stirred tank reactors (CSTR, V = 2L) (referred as R1 - R4) were fed with synthetic wastewater containing Pb2+ in the concentrations of 0, 100, 150 and 200 mg L-1 of lead and operated with a hydraulic retention time of 5 days for 40 days. The loading rates of each metal in R1- R4 were 0, 20, 30 and 40 mg L-1 d-1, respectively. The results showed that there was no inhibition of SRB growth and that lead removal efficiencies of 99-100% for Pb2+ were achieved in R2 (100 mg L-1) and R3 (150 mg L-1) throughout the experiment. For the highest lead concentration of  200 mg L-1, a decrease in efficiency of removal (from 100 to 96%) was observed at the end of the experiment. The obtained result of this study might help for a better control operation and performance improvements of reactors.


Sign in / Sign up

Export Citation Format

Share Document