scholarly journals Integration of Open Source GIS Software for Improving Decision Making in Small and Medium Companies

Author(s):  
Ali Hameed Yassir

In this paper, a prototype is proposed of integrating various features and functionalities of different open source GIS software to improve decision-making in small and medium companies. The paper shows possibilities of integrating various open source GIS software to support decision making. Open source software features is combined with the functionalities of GIS such as processing using Quantum GIS, storing and analyzing of spatial data to produce results using PostgreSQL, Providing and sharing Geo-data over the network locally or over the globe using Geoserver, The prototype is based on the three basics features low /free cost of using GIS open source software, simplicity and usability, multiplatform supporting. The integration of open source software is appropriate and successful for the use of companies in the field of GIS, this initiative represents a suitable business solutions that do not consume a lot of money and training to develop the skills of the technicians in this field, therefore, this will open the door for other companies to follow this trend. This prototype provides an opportunity for open source software components to process and store data in databases or shares the results over different networks.  

2016 ◽  
Author(s):  
Anna Bruna Petrangeli ◽  
Elisabetta Preziosi ◽  
Francesco Campopiano ◽  
Angelo Corazza ◽  
Andrea Duro

GIS technology has been used for many years in environmental risk analysis due to its capability to focus on the management and analysis of geographic and alphanumeric data to support spatial decision-making (Vairavamoorthy et al, 2007). Especially in emergency management, a DSS (Decision Support System) constitutes an important task to provide quick responses, though not completely exhaustive, to immediately handle a critical scenario and limit the possible damage. In the framework of a collaboration between the Water Research Institute and the National Civil Protection Department, a customized tool called CREGIS (ContaminazioneRisorseEvento-GIS) has been developed in order to facilitate the emergency management of accidental contamination of aquifers and support decision making (Preziosi et al, 2013). The tool is aimed at both national and local authorities in order to improve response capability for a better emergency management. Originally, the tool has been developed programming Python in an ArcGIS environment; but due to the great development and dissemination of open source software, our aim is to replicate the same structure programming Python in a GIS open source environment (QGIS). The review of the tool's code is still in progress. The goal is to make the tool (now named CREGIS-Q) free and accessible to a greater number of people and stakeholders.


2016 ◽  
Author(s):  
Anna Bruna Petrangeli ◽  
Elisabetta Preziosi ◽  
Francesco Campopiano ◽  
Angelo Corazza ◽  
Andrea Duro

GIS technology has been used for many years in environmental risk analysis due to its capability to focus on the management and analysis of geographic and alphanumeric data to support spatial decision-making [Vairavamoorthy et al, 2007]. Especially in emergency management, a DSS (Decision Support System) constitutes an important task to provide quick responses, though not completely exhaustive, to immediately handle a critical scenario and limit the possible damage. In the framework of a collaboration between the Water Research Institute and the National Civil Protection Department, a customized tool called CREGIS (ContaminazioneRisorseEvento-GIS) has been developed in order to facilitate the emergency management of accidental contamination of aquifers and support decision making [Preziosi et al, 2013]. The tool is aimed at both national and local authorities in order to improve response capability for a better emergency management. Originally, the tool has been developed programming Python in an ArcGIS environment; but due to the great development and dissemination of open source software, our aim is to replicate the same structure programming Python in a GIS open source environment (QGIS). The review of the tool's code is still in progress. The goal is to make the tool (now named CREGIS-Q) free and accessible to a greater number of people and stakeholders.


Author(s):  
Shahriar Shams

There has been a significant development in the area of free and open source geospatial software. Research has flourished over the decades from vendor-dependent software to open source software where researchers are paying increasing attention to maximize the value of their data. It is often a difficult task to choose particular open source GIS (OGIS) software among a number of emerging OGIS software. It is important to characterise the projects according to some unified criteria. Each software has certain advantages and disadvantages and it is always time consuming to identify exactly which software to select for a specific purpose. This chapter focuses on the assessment criteria enabling developers, researchers, and GIS users to select suitable OGIS software to meet their requirements for analysis and design of geospatial application in multidisciplinary fields. This chapter highlights the importance of assessment criteria, followed by an explanation of each criteria and their significance with examples from existing OGIS software.


2018 ◽  
Author(s):  
Luís Moreira de Sousa

The volume and coverage of spatial data has increased dramatically in recent years, with Earth observation programmes producing dozens of GB of data on a daily basis. The term Big Spatial Data is now applied to data sets that impose real challenges to researchers and practitioners alike. The difficulties are partly related to a lack of tools supporting appropriate Coordinate Reference Systems (CRS). As rule, these data are provided in highly irregular geodesic grids, defined along equal intervals of latitude and longitude. Compounding the problem, users of such data end up taking geodesic coordinates in these grids as a Cartesian system, implicitly applying Marinus of Tyre's projection. A first approach towards the compactness of global geo-spatial data is to work in a Cartesian system produced by an equal-area projection. There are a good number to choose from, but those commonly supported by GIS software invariably relate to the sinusoidal or pseudo-cylindrical families, that impose important distortions of shape and distance. The land masses of Antarctica, Alaska, Canada, Greenland and Russia are particularly distorted with such projections. A more effective approach is to store and work with data in modern cartographic projections, in particular those defined with the Platonic and Archimedean solids. In spite of various attempts at open source software supporting these projections, in practice they remain today largely out of reach to GIS practitioners. This communication reviews persisting difficulties in working with worldwide big spatial data, current strategies to address such difficulties, the compromises they impose and the remaining gaps in open source software.


2018 ◽  
Author(s):  
Luís Moreira de Sousa

The volume and coverage of spatial data has increased dramatically in recent years, with Earth observation programmes producing dozens of GB of data on a daily basis. The term Big Spatial Data is now applied to data sets that impose real challenges to researchers and practitioners alike. As rule, these data are provided in highly irregular geodesic grids, defined along equal intervals of latitude and longitude, a vastly inefficient and burdensome topology. Compounding the problem, users of such data end up taking geodesic coordinates in these grids as a Cartesian system, implicitly applying Marinus of Tyre's projection. A first approach towards the compactness of global geo-spatial data is to work in a Cartesian system produced by an equal-area projection. There are a good number to choose from, but those supported by common GIS software invariably relate to the sinusoidal or pseudo-cylindrical families, that impose important distortions of shape and distance. The land masses of Antarctica, Alaska, Canada, Greenland and Russia are particularly distorted with such projections. A more effective approach is to store and work with data in modern cartographic projections, in particular those defined with the Platonic and Archimedean solids. In spite of various attempts at open source software supporting these projections, in practice they remain today largely out of reach to GIS practitioners. This communication reviews persisting difficulties in working with global big spatial data, current strategies to address such difficulties, the compromises they impose and the remaining gaps in open source software.


Author(s):  
Luís Moreira de Sousa

The volume and coverage of spatial data has increased dramatically in recent years, with Earth observation programmes producing dozens of GB of data on a daily basis. The term Big Spatial Data is now applied to data sets that impose real challenges to researchers and practitioners alike. As rule, these data are provided in highly irregular geodesic grids, defined along equal intervals of latitude and longitude, a vastly inefficient and burdensome topology. Compounding the problem, users of such data end up taking geodesic coordinates in these grids as a Cartesian system, implicitly applying Marinus of Tyre's projection. A first approach towards the compactness of global geo-spatial data is to work in a Cartesian system produced by an equal-area projection. There are a good number to choose from, but those supported by common GIS software invariably relate to the sinusoidal or pseudo-cylindrical families, that impose important distortions of shape and distance. The land masses of Antarctica, Alaska, Canada, Greenland and Russia are particularly distorted with such projections. A more effective approach is to store and work with data in modern cartographic projections, in particular those defined with the Platonic and Archimedean solids. In spite of various attempts at open source software supporting these projections, in practice they remain today largely out of reach to GIS practitioners. This communication reviews persisting difficulties in working with global big spatial data, current strategies to address such difficulties, the compromises they impose and the remaining gaps in open source software.


Author(s):  
H. S. Liu ◽  
H. M. Liao

Direct geo-referencing system uses the technology of remote sensing to quickly grasp images, GPS tracks, and camera position. These data allows the construction of large volumes of images with geographic coordinates. So that users can be measured directly on the images. <br><br> In order to properly calculate positioning, all the sensor signals must be synchronized. Traditional aerial photography use Position and Orientation System (POS) to integrate image, coordinates and camera position. However, it is very expensive. And users could not use the result immediately because the position information does not embed into image. To considerations of economy and efficiency, this study aims to develop a direct geo-referencing system based on open source software and hardware platform. <br><br> After using Arduino microcontroller board to integrate the signals, we then can calculate positioning with open source software OpenCV. In the end, we use open source panorama browser, panini, and integrate all these to open source GIS software, Quantum GIS. A wholesome collection of data – a data processing system could be constructed.


2016 ◽  
Author(s):  
Anna Bruna Petrangeli ◽  
Elisabetta Preziosi ◽  
Francesco Campopiano ◽  
Angelo Corazza ◽  
Andrea Duro

GIS technology has been used for many years in environmental risk analysis due to its capability to focus on the management and analysis of geographic and alphanumeric data to support spatial decision-making (Vairavamoorthy et al, 2007). Especially in emergency management, a DSS (Decision Support System) constitutes an important task to provide quick responses, though not completely exhaustive, to immediately handle a critical scenario and limit the possible damage. In the framework of a collaboration between the Water Research Institute and the National Civil Protection Department, a customized tool called CREGIS (ContaminazioneRisorseEvento-GIS) has been developed in order to facilitate the emergency management of accidental contamination of aquifers and support decision making (Preziosi et al, 2013). The tool is aimed at both national and local authorities in order to improve response capability for a better emergency management. Originally, the tool has been developed programming Python in an ArcGIS environment; but due to the great development and dissemination of open source software, our aim is to replicate the same structure programming Python in a GIS open source environment (QGIS). The review of the tool's code is still in progress. The goal is to make the tool (now named CREGIS-Q) free and accessible to a greater number of people and stakeholders.


Sign in / Sign up

Export Citation Format

Share Document