scholarly journals Direct Compression and in vitro Release of Chlorpheniramine Maleate from Tablets Containing Fluid Bed Dried and Lyophilized Microcrystalline Cellulose Derived from Cocos nucifera

Author(s):  
Nkemakolam Nwachukwu ◽  
Kenneth Chinedu Ugoeze ◽  
Ogbonna Okorie ◽  
Sabinus Ifeanyi Ofoefule

Aims: To investigate the mechanical and in vitro release properties of chlorpheniramine maleate (CM) tablets formulated with fluid bed dried and lyophilized microcrystalline cellulose (MCC) derived from the fruit husk of Cocos nucifera (CN). Study Design: Experimental design. Place and Duration of Study: Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka from January, 2015 to December, 2016. Methods: Chips of matured (CN) fruit husk were de-lignified by soda treatment methods to obtain alpha cellulose which was hydrolyzed with mineral acid (Hydrochloric acid) to obtain CN-MCC. A portion of the damp CN-MCC was fluid bed dried at 60°C for 2 h (coded MCCF-Cocos) and the remaining CN-MCC was lyophilized at -45°C for 3 h (coded MCCL-Cocos). The MCC powders were blended with 20, 30 and 40% w/w CM and directly compressed at 9.81 mega Pascal (mPa). The CM tablets containing MCCF-Cocos (coded CM-CF) and MCCL-Cocos (coded CM-CL) were evaluated using standard methods. Results: Both batches had tablets with minimal weight variation; CM-CL tablets were mechanically stronger (P = .037) and less friable than CM-CF tablets.  CM-CL tablets took a longer time to disintegrate than CM-CF tablets. Comparatively, CM tablets containing AVC-102 (coded CM-AV) were mechanically stronger, less friable and had a longer disintegration time than CM-CL and CM-CF tablets. The dilution potential of CM-AV was greater than CM-CL and CM-CF tablets. CM release was faster in CM-CF. There was more than 80 % release of CM from CM-CF, CM-CL and CM-AV tablets within 30 min. Although CM-CL tablets were mechanically stronger than CM-CF, the data for all batches of the tablets obtained fell within the British Pharmacopoeia set limits for uncoated tablets. Conclusion: Chlorpheniramine maleate tablets containing fluid bed dried and lyophilized microcrystalline cellulose obtained from C. nucifera had good mechanical and in vitro release properties.

Author(s):  
Nkemakolam Nwachukwu ◽  
Sabinus Ifeanyi Ofoefule

Aim: This study aimed to evaluate the mechanical and in vitro release properties of diazepam from tablets containing fluid bed dried and lyophilized microcrystalline cellulose (MCC) obtained from the matured fruit husks of Cocos nucifera (CN). Study Design: Method of experiment. Place and Duration of Study: Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka from March 2015 to September, 2016 Methods:  Dried CN fruit husks were digested in sodium hydroxide to obtain alpha (α) cellulose which on hydrolysis with mineral acid (Hydrochloric acid) solution gave CN-MCC. The dry MCC obtained by either fluid bed or lyophilized drying of the wet CN-MCC were coded MCCF-Cocos and MCCL-Cocos respectively. Both MCCs were used in the formulation of diazepam tablets at 20, 30 and 40% w/w. Avicel PH 102 (AVC-102), was used as comparing standard. The tablets were evaluated for physical and dissolution properties using standard methods. Results: Results show the tablets passed the British Pharmacopoeia specifications for weight uniformity, crushing strength, disintegration time, friability and dissolution. Diazepam tablets containing MCCL-Cocos (coded DCL) were mechanically stronger than those containing MCCF-Cocos (coded DCF). Disintegration time was in the order of DCF > DCL tablets while friability was in the order of DCL < DCF tablets. Diazepam tablets containing AVC-102 (coded DAV) were mechanically stronger than DCL and DCF tablets. The dilution potential was in the order DAV > DCL > DCF. More than 80% of the diazepam content was released from DAV, DCL and DCF tablets. Conclusion: Generally, DAV, DCL and DCF tablets met the British Pharmacopoeia limits for mechanical properties and in vitro drug release with DCL tablets showing significantly (P = .05) superior mechanical properties while DCF showed faster drug release.


2014 ◽  
Vol 50 (4) ◽  
pp. 799-818 ◽  
Author(s):  
Tariq Ali ◽  
Muhammad Harris Shoaib ◽  
Rabia Ismail Yousuf ◽  
Sabahat Jabeen ◽  
Iyad Naeem Muhammad ◽  
...  

The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2) results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.


Author(s):  
MAZIN THAMIR ABDUL-HASAN ◽  
ABULFADHEL JABER NEAMAH Al-SHAIBANI ◽  
ALI N. WANNAS ◽  
KARRAR MOHAMMED HASAN AL-GBURI

Objective: This study was employed to evaluate the quality of marketed oral tablets containing clopidogrel bisulfate. Tablets produced by various companies and commercialized in the Iraq market were used in the study. Methods: Batches of clopidogrel bisulfate conventional tablets (containing 75 mg of drug) were exposed to the quality control tests. These tests involved friability, weight variation, hardness, drug content, disintegration time, and in vitro release study; these tests were conducted depending on USP pharmacopeia. Results: The data indicate that all batches of clopidogrel bisulfate complied with the limitations of USP pharmacopeia for variation of weight, results of the hardness of tablets were 7.2-9.6 Kg/cm2. Friability value (% loss) was less than one, which was within the required limits. The time of disintegration was less than 25 min in both artificial gastric fluid (AGF) and artificial intestinal fluid (AIF). Drug content was observed between 97.1 % and 99.8 %, indicating compliance with the limits of pharmacopeia (85-115 %). An in vitro release study of batches was greater than 80 % within 25 min. Conclusion: All batches of clopidogrel bisulfate were manufactured within the criteria of tablet manufacturing. The quality control tests of tablets showed acceptable pharmaceutical properties (effectiveness and safety) that lie within the limits of USP pharmacopeia.


2021 ◽  
Vol 15 (1) ◽  
pp. 038-048
Author(s):  
Nkemakolam Nwachukwu ◽  
Sabinus Ifeanyi Ofoefule

The flow, tableting and in vitro release properties of directly compressed chlorpheniramine maleate (CPM) tablets containing fluid bed dried and lyophilized microcrystalline cellulose (MCC) obtained from Gossypium herbaceum (GH) were investigated. Delignification of dried GH linters was done through the soda process to obtain alpha cellulose which was hydrolyzed with 2.0 N hydrochloric acid to get MCC. The MCC was washed with water until neutral. Drying was done by either fluid bed method or lyophilization to obtain MCC-GossF and MCC-GossL respectively. Chlorpheniramine tablets containing 20, 30 and 40% of the MCCs were prepared by direct compression method. Avicel PH102 (AVH-102) served as comparing standard. Using standard methods, evaluation of the powders and the tablets was done. The evaluated parameters of the powders and tablets conformed to the British Pharmacopoeia specifications. The CPM tablets containing MCC-GossF (coded CGF) had better flow but were not mechanically as strong as those containing MCC-GossL (coded CGL). The hardness and disintegration times of the tablets were in the order of CGF < CGL and the friability was in the order of CGF > CGL. Similar parameters of DCL compared well with CPM tablets containing AVH-102 (coded DAV). The MCC obtained from GH had dilution potential up to 40% except in CGF-4 tablets. The in vitro dissolution showed > 80% CPM release from all the batches within 30 min. The release kinetics were of mixed order while the mechanism of drug release was Fickian. The MCCs served as good directly compressible binder for chlorpheniramine maleate.


Author(s):  
Deborah Ejiogu Chioma ◽  
Felix Sunday Yusuf

Metoclopramide hydrochloride is a dopamine receptor antagonist, used mostly for stomach and esophageal problems as it is a prokinetic agent. The aim of the present study was to design and evaluate the suppositories of Metoclopramide HCl.  Six different, rectal suppositories were developed by fusion (pour-moulding) method by employing various hydrophilic and hydrophobic polymeric bases like gelatin, PEG-400 and hydrogenated vegetable oil using propylene glycol as plasticizer and beeswax as hardening agent.  Metoclopramide HCl suppositories were evaluated for appearance, weight variation, drug content uniformity, liquefaction time and temperature, micro-melting range, disintegration and in-vitro release study.  The in-vitro release rate data was evaluated statistically and was found that from all the formulations the drug release is by diffusion mechanism. Optimum formulation of batch S1 has shown 83.427% Metoclopramide HCl in a study of 2 hrs. These drug release results are supported by the disintegration time of suppositories. Lesser the disintegration time faster the drug release. All formulations has shown zero, first and Higuchi release kinetics. The result suggests that the Metoclopramide HCl suppositories can be prepared by employing hydrophilic and hydrophobic polymers.


Author(s):  
Rai V. K. ◽  
Pathak N. ◽  
Bhaskar R. ◽  
Nandi B. C. ◽  
Dey S. ◽  
...  

The purpose of this research is to prepare Raloxifene Hydrochloride immediate release tablet by wet granulation technique. In order to obtain the best, optimized product six different formulations were developed. Different filler, binder, disintegrant and lubricant were taken as variables. Weight variation, thickness, hardness, friability, disintegration time, in-vitro release and pharmaceutical assay were studied as response variables. Sticking was observed when the formulation containing stearic acid and sodium stearyl fumarate. However, in the remaining four formulation containing magnesium stearate, no sticking was observed. The formulation NP061 was selected as an optimized product. The different physical properties and in-vitro release profile showed best comparable with reference product. Optimization has proven as an effective tool in product development.


Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


Author(s):  
Sarika S. Malode ◽  
Milind P. Wagh

The objective of present work was to develop taste masked orodispersible tablets of mirabegron. Mirabegron is beta 3 adrenoceptor agonist used to treat overactive bladder. Overactive bladder (OAB) is defined as a symptom syndrome showing feeling of urgency to urinate, typically accompanied by frequent daytime and nocturnal urination, in the absence of proven infection or other obvious pathology. Over active bladders are generally common in geriatrics. Moreover, this drug has a very strong bitter taste. Frequent dosing requires frequent water intake, which further aggregates the condition of over active bladder and bitter taste of drug affects patient compliance. Hence a need arises to mask the bitter taste for development of an ODT which does not require consuming water with every dosage. In this work, the bitter taste of mirabegron was masked by forming a complex with an ion exchange resin tulsion 344. The drug resin complexation process was optimized for resin activation, drug: resin ratio, soaking time and stirring time. In –vitro release studies revealed complete drug elution from the complex within 10 minutes in pH 1.2 buffer. The taste-masked complex was then formulated into palatable orodispersible tablets using a direct compression approach by use of superdisintegrants to achieve a rapid disintegration. The tablets were evaluated for weight variation, hardness, friability, drug content, wetting time, In- vivo disintegration time and in-vitro dissolution time.


Author(s):  
Omar Saeb Salih ◽  
Roaa Abdalhameed Nief

ABSTRACTObjective: The objective of this study is to develop a controlled release matrix tablet of candesartan cilexetil to reduce the frequency of administration,enhance bioavailability and improve patient compliance; a once daily sustained release formulation of candesartan cilexetil is desirable.Methods: The prepared tablets from F1 to F24 were evaluated with different evaluation parameters like weight variation, drug content, friability,hardness, thickness and swelling ability. In vitro release for all formulas were studied depends on the type and amount of each polymer, i.e. (16 mg,32 mg and 48 mg) respectively beside to the combination effect of polymers on the release of the drug from the tablet.Results: In vitro release showed that formula 13 had the faster release (100% after 4 h) which contained acacia (1:1) and the lowest sustain releasewas showed for F7 (73% after 8 h) which contained HPMC K100M (1:1). Formula 1 was an 89 % release after 8 h which contain eudragit RS100; F4was a 100 % release after 5 h which contain Na CMC, F10 was a 100% after 8 h which contain xanthan gum and F16 was a 100 % release after 5 hwhich contain tragacanth polymer. Formula 9 had a lower release than F7 and F8 respectively. Formula 7 can be used for sustain oral drug delivery ofcandesartan cilexetil while Formula 13 can be used in contrary as fast release tablets for faster response.Conclusion: Controlled drug delivery system is promising for less dosing and higher patient compliance.Keywords: Angiotensin II receptor antagonist, Hypertension, Matrix system, Control release.


2014 ◽  
Vol 12 (2) ◽  
pp. 119-123
Author(s):  
MS Ashwini ◽  
Mohammed Gulzar Ahmed

The study was designed for the investigation of pulsatile device to achieve time or site specific release of Losartan potassium based on chronopharmaceutical considerations. The basic design involves the preparation of cross linked hard gelatin capsules by using formaldehyde, then the drug diluent mixture were prepared and loaded in, which was separated by using hydrogel plugs of different polymers of different viscosities. Prepared formulations were subjected to evaluation of various parameters like weight variation, percentage drug content, in vitro drug release and stability studies. Weight variation and percentage drug content results showed that they were within the limits of official standards. The in-vitro release studies revealed that the capsules plugged with polymer HPMC showed better pulsatile or sustained release property as compared to the other formulations. The stability studies were carried out for all the formulations and formulations F1 & F2 were found to be stable. Dhaka Univ. J. Pharm. Sci. 12(2): 119-123, 2013 (December) DOI: http://dx.doi.org/10.3329/dujps.v12i2.17610


Sign in / Sign up

Export Citation Format

Share Document