Effective Utilization of Transmission Line Capacity in a Meshed Network with Series Capacitor up to Its Thermal Limit: A Recent Study

Author(s):  
M. H. Ananda ◽  
M. R. Shivakumar

Power system networks are becoming interconnected for the purpose of power delivery to decrease the overall power generation cost. With insufficient control, the power systems become more complicated to function and less secure. The economics of AC power transmission have always forced the planning engineers to transmit as much power as possible through a given transmission line. The smaller and thermally limited lines are crowded in many networks while other higher capacity lines run well below their thermal maximum. When series capacitors are introduced in the higher voltage cables, power may be transferred from the overloaded lines, maximizing the use of the existing line as well as complementing the performance of the power system. In this paper, a three-line meshed power system network with different thermal line limits is considered for the purpose of showing effective utilization of line network for maximum power flow through the intended line with series capacitor compensation. The simulations are performed by using PowerWorld simulator confirms the addition of series capacitor increases the power transfer through the line up to its thermal limit


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2250
Author(s):  
Minh-Chau Dinh ◽  
Minh-Quan Tran ◽  
Jae-In Lee ◽  
Seok-Ju Lee ◽  
Chur Hee Lee ◽  
...  

A thyristor-controlled series capacitor (TCSC) is employed to a transmission line in order to enhance the usable capacity of the present as well as upgraded lines, improve system stability, reduce losses, and improve power flow control capability. However, in an abnormal situation, the TCSC may transit from the existing operation mode to the other mode according to its control system and protection strategy. There is much difference in the impedance of the TCSC between each mode. This threatens the reliability of the conventional protection system, especially the distance relay, that works based on the measurement of line impedance. In this paper, we suggest a new protection scheme for a distance relay of a transmission line equipped with a TCSC. In the suggested method, in order to mitigate the effect of the TCSC in the fault loop, the TCSC injected voltage is subtracted from the measured phase voltage before supplying the voltage signal to the distance relay. The suggested scheme was verified by a real time digital simulator (RTDS)-based closed-loop test bed of a protective relay. The effect of the TCSC in the fault loop was completely mitigated. The distance relay works properly with the suggested scheme.


Sign in / Sign up

Export Citation Format

Share Document