Study on Impact of Clay Minerals on the Characteristics of Volume Changes of Heavy Soils

Author(s):  
Milan Gomboš ◽  
I. D. Andrej Tall ◽  
Branislav Kandra ◽  
Dana Pavelková
Keyword(s):  
2019 ◽  
Vol 14 (No. 2) ◽  
pp. 57-66 ◽  
Author(s):  
Andrej Tall ◽  
Branislav Kandra ◽  
Milan Gomboš ◽  
Dana Pavelková

Volume changes of soil associated with soil moisture changes are caused by the presence of clay minerals from illite and montmorillonite groups. Clay minerals are found in the so-called clay soil component which can be quantified by laboratory analysis of the soil particle-size distribution. Consequently, the potential for volume changes in soil can be assessed from soil texture. In our study, 172 soil samples with different textures were used to measure dependencies between volume changes in soil and changes in soil moisture under laboratory conditions. The samples were collected from 11 sites in the Eastern Slovak Lowland. On the basis of the measurements, 10 mathematical models were created to compute the correlation between volume changes of soil and soil moisture content and texture. The highest accuracy was obtained with the model which assumes the content of particles < 0.002 mm. When comparing the clay particles < 0.001 mm (colloidal clay) with the particles < 0.002 mm (colloidal + physical clay) it was also found that the particles < 0.002 mm have a larger impact on the volume changes of soil than the particles < 0.001. The inclusion of particles > 0.002 mm (silt + sand) into the models resulted in either no or only negligible refinement of the soil volume change calculations.  


2016 ◽  
Vol 837 ◽  
pp. 109-112 ◽  
Author(s):  
Tereza Otcovska ◽  
Pavel Padevět

Unburned clay was used for the traditional engineering works for thousands years. Its qualities have not been too appreciated in the last few decades. Because of that, its material characteristics were never researched very rigorously. In last years, we could see increasing demand for use of this building material in building practice and research. The basic problem that should be mitigated by civil engineers handling unburned clay is its considerable shrinkage during drying. The degree of shrinkage depends on the amount of mixture water and on the amount and type of clay minerals. In the unburned clay, like in the cement, clay minerals play role of the binder. The problem is that clay minerals are causing volume changes. This paper is focused on the degree of shrinkage and its dependence on the species and quantity of clay mineral.


Author(s):  
N. Kohyama ◽  
K. Fukushima ◽  
A. Fukami

Since the interlayer or adsorbed water of some clay minerals are quite easily dehydrated in dried air, in vacuum, or at moderate temperatures even in the atmosphere, the hydrated forms have not been observed by a conventional electron microscope(TEM). Recently, specific specimen chambers, “environmental cells(E.C.),” have been developed and confirmed to be effective for electron microscopic observation of wet specimen without dehydration. we observed hydrated forms of some clay minerals and their morphological changes by dehydration using a TEM equipped with an E.C..The E.C., equipped with a single hole copper-microgrid sealed by thin carbon-film, attaches to a TEM(JEM 7A) with an accelerating voltage 100KV and both gas pressure (from 760 Torr to vacuum) and relative humidity can be controlled. The samples collected from various localities in Japan were; tubular halloysite (l0Å) from Gumma Prefecture, sperical halloysite (l0Å) from Tochigi Pref., and intermediate halloysite containing both tubular and spherical types from Fukushima Pref..


Author(s):  
J. Thieme ◽  
J. Niemeyer ◽  
P. Guttman

In soil science the fraction of colloids in soils is understood as particles with diameters smaller than 2μm. Clay minerals, aquoxides of iron and manganese, humic substances, and other polymeric materials are found in this fraction. The spatial arrangement (microstructure) is controlled by the substantial structure of the colloids, by the chemical composition of the soil solution, and by thesoil biota. This microstructure determines among other things the diffusive mass flow within the soils and as a result the availability of substances for chemical and microbiological reactions. The turnover of nutrients, the adsorption of toxicants and the weathering of soil clay minerals are examples of these surface mediated reactions. Due to their high specific surface area, the soil colloids are the most reactive species in this respect. Under the chemical conditions in soils, these minerals are associated in larger aggregates. The accessibility of reactive sites for these reactions on the surface of the colloids is reduced by this aggregation. To determine the turnover rates of chemicals within these aggregates it is highly desirable to visualize directly these aggregation phenomena.


1997 ◽  
Vol 94 ◽  
pp. 1816-1826 ◽  
Author(s):  
M Glazov ◽  
LM Pavlova ◽  
SV Stankus
Keyword(s):  

2005 ◽  
Vol 38 (05) ◽  
Author(s):  
TS Frodl ◽  
T Zetzsche ◽  
G Schmitt ◽  
T Schlossbauer ◽  
MW Jäger ◽  
...  

2018 ◽  
Vol 52 (4) ◽  
pp. 317-333 ◽  
Author(s):  
Jaeguk Jo ◽  
Toshiro Yamanaka ◽  
Tomoki Kashimura ◽  
Yusuke Okunishi ◽  
Yoshihiro Kuwahara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document