Studies on the effects of Posterior Amputation on the Cerebral Neurosecretory Cells of Indian Earthworm, Lampito mauritii (Kinberg)

2021 ◽  
pp. 146-155
Author(s):  
Anurag Bhattacharjee ◽  
P. S. Chaudhuri
Keyword(s):  
Author(s):  
M. Sato ◽  
Y. Ogawa ◽  
M. Sasaki ◽  
T. Matsuo

A virgin female of the noctuid moth, a kind of noctuidae that eats cucumis, etc. performs calling at a fixed time of each day, depending on the length of a day. The photoreceptors that induce this calling are located around the neurosecretory cells (NSC) in the central portion of the protocerebrum. Besides, it is considered that the female’s biological clock is located also in the cerebral lobe. In order to elucidate the calling and the function of the biological clock, it is necessary to clarify the basic structure of the brain. The observation results of 12 or 30 day-old noctuid moths showed that their brains are basically composed of an outer and an inner portion-neural lamella (about 2.5 μm) of collagen fibril and perineurium cells. Furthermore, nerve cells surround the cerebral lobes, in which NSCs, mushroom bodies, and central nerve cells, etc. are observed. The NSCs are large-sized (20 to 30 μm dia.) cells, which are located in the pons intercerebralis of the head section and at the rear of the mushroom body (two each on the right and left). Furthermore, the cells were classified into two types: one having many free ribosoms 15 to 20 nm in dia. and the other having granules 150 to 350 nm in dia. (Fig. 1).


Author(s):  
Seiji Shioda ◽  
Yasumitsu Nakai ◽  
Atsushi Ichikawa ◽  
Hidehiko Ochiai ◽  
Nobuko Naito

The ultrastructure of neurosecretory cells and glia cells in the supraoptic nucleus (SON) of the hypothalamus and the neurohypophysis (PN) was studied after rapid freezing followed by substituion fixation. Also, the ultrastructural localization of vasopressin (VP) or its carrier protein neurophys in II (NPII) in the SON and PN was demonstrated by using a post-embedding immunoco1loidal gold staining method on the tissue sections processed by rapid freezing and freeze-substitution fixation.Adult male Wistar rat hypothalamus and pituitary gland were quenched by smashing against a copper block surface precooled with liquid helium and freeze-substituted in 3% osmium tetroxide-acetone solutions kept at -80°C for 36-48h. After substituion fixation, the tissue blocks were warmed up to room temperature, washed in acetone and then embedded in an Epon-Araldite mixture. Ultrathin sections mounted on 200 mesh nickel grids were immersed in saturated sodium metaperiodate and then incubated in each of the following solutions: 1 % egg albumin in phosphate buffer, VP or NPII (1/1000-1/5000) antiserum 24h at 4°C, 3) colloidal gold solution (1/20) 1h at 20°C. The sections were washed with distilled waterand dried, then stained with uranylacetate and lead citrate and examined with Hitachi HU-12A and H-800 electron microscopes.


2017 ◽  
Vol 23 (1) ◽  
Author(s):  
C.A. JAWALE

Ovarian maturation by neurosecretory cells in the brain of freshwater crab, Barytelphusa cunicularis have been examined. The histological scrutiny of the brain of Barytelphusa cunicularis related with three types (A, B and C) of neurosecretory cells, which are classified on the basis of size, shape and tinctorial characters. All these types of cells marked annual cyclic changes of cytoplasmic material in association with ovarian cycle. The activity of these cells has been correlated with the ovarian cycle. They are distinguishable by their size, nature locations, shape, nucleus position, cell measure and the secretory product in the cytoplasm. The result indicates that the neurosecretory A, B and C cells of the brain seen involved in the process of mating ovulation. The neurosecretory materials staining intensity index of these cells is described.


Parasitology ◽  
1981 ◽  
Vol 83 (2) ◽  
pp. 243-247 ◽  
Author(s):  
Margaretha K. S. Gustafsson ◽  
Marianne C. Wikgren

SUMMARYThe activation of the peptidergic neurosecretory system in Diphyllobothrium dendriticum was studied following cultivation of plerocercoids for short times in vitro and in vivo. In the plerocercoid the neurosecretory cells gave a very weak reaction with paraldehyde fuchsin (PAF). After cultivation for 1 h large numbers of neurosecretory cells filled with PAF-positive granules were evident. The significance of the activation of the neurosecretory system during the transfer of the worm from the cold-blooded fish host to the warm-blooded final host is discussed.


Nature ◽  
1957 ◽  
Vol 179 (4553) ◽  
pp. 257-258 ◽  
Author(s):  
ALASTAIR FRASER

1983 ◽  
Vol 265 (2) ◽  
pp. 307-311 ◽  
Author(s):  
Raymon M. Glantz ◽  
Mark D. Kirk ◽  
Hugo Are´chiga

1963 ◽  
Vol 40 (2) ◽  
pp. 301-321
Author(s):  
ELLEN THOMSEN ◽  
IB MØLLER

1. The protease activity of the adult Calliphora female measured on the first 5 days after emergence was found to be highly influenced by the diet, the activity of females fed on sugar, water and meat (meat-flies) being much higher than that of females fed only on sugar and water (sugar-flies). 2. The development of the enzyme(s) was found to be controlled by the medial neurosecretory cells (m.n.c.), the mean protease activity of females deprived of their m.n.c. only amounting to one-quarter to one-third of the maximum values for the meat-flies. 3. Implantation of corpora cardiaca-allata (presumably containing m.n.c. hormone) into females without m.n.c. raised the protease activity of these significantly, showing that the influence of the implanted organs must be hormonal. 4. The corpus allatum was found to have a certain, if minor, effect on the protease activity. 5. It is concluded that in Calliphora the eating of meat exerts its effect on the production of protease mainly indirectly by causing liberation of m.n.c. hormone into the blood. 6. As proteases are themselves proteins, the effect of the m.n.c. hormone on the production of proteolytic enzymes by the gut cells must be regarded as an effect on the specific protein synthesis of these cells. There is some evidence that the m.n.c. hormone might be involved in the regulation of protein synthesis in general.


1988 ◽  
Vol 139 (1) ◽  
pp. 317-328
Author(s):  
R. N. McBurney ◽  
S. J. Kehl

One of the goals in studying the electrical properties of neurosecretory cells is to relate their electrical activity to the process of secretion. A central question in these studies concerns the role of transmembrane calcium ion flux in the initiation of the secretory event. With regard to the secretory process in pituitary cells, several research groups have addressed this question in vitro using mixed primary anterior pituitary cell cultures or clonal cell lines derived from pituitary tumours. Other workers, including ourselves, have used homogeneous cell cultures derived from the pituitary intermediate lobes of rats to examine the characteristics of voltage-dependent conductances, the contribution of these conductances to action potentials and their role in stimulus-secretion coupling. Pars intermedia (PI) cells often fire spontaneous action potentials whose frequency can be modified by the injection of sustained currents through the recording electrode. In quiescent cells action potentials can also be evoked by the injection of depolarizing current stimuli. At around 20 degrees C these action potentials have a duration of about 5 ms. Although most of the inward current during action potentials is carried by sodium ions, a calcium ion component can be demonstrated under abnormal conditions. Voltage-clamp experiments have revealed that the membrane of these cells contains high-threshold, L-type, Ca2+ channels and low-threshold Ca2+ channels. Since hormone release from PI cells appears not to be dependent on action potential activity but does depend on external calcium ions, it is not clear what role these Ca2+ channels play in stimulus-secretion coupling in cells of the pituitary pars intermedia. One possibility is that the low-threshold Ca2+ channels are more important to the secretory process than the high-threshold channels.


Sign in / Sign up

Export Citation Format

Share Document