scholarly journals Risk Assessment of Malakite with the Active Substances Dithianon and Pyrimenthanil

Author(s):  
Torsten Källqvist ◽  
Merete Grung ◽  
Katrine Borgå ◽  
Hubert Dirven ◽  
Ole Martin Eklo ◽  
...  

The plant protection product Malakite (BAS 669 01 F), containing the active substances dithianon and pyrimethanil, is a fungicide against scab in pome fruits. Products containing these active plant protection substances are approved in Norway, but not with both substances in the same product. The Swedish Chemicals Agency (KemI) has as zonal Rapporteur Member State (zRMS) of the Northern Zone evaluated the product Malakite and decided on non-approval due to the observation of unacceptable effects in exposed birds, aquatic organisms, non-target arthropods and earthworms. On request from The Norwegian Food Safety Authority, the VKM Panel on Plant Protection Products has discussed the available data and the report prepared by KemI, and has concluded as follows on the questions raised: On the refinement of DT50 in long term risk assessment for birds: It is the view of the VKM panel that the refinement is not acceptable because the analysis using first order kinetics seems not in line with a realistic and sufficiently conservative approach for the data provided. Furthermore, field studies from more sites are required. On the long term cumulative effects of the active substances on birds: VKM shares the view of KemI, that the combined sub-lethal and reproduction effects should be assessed because the mode of action of the two ingredients has only been shown in fungi, and since the mechanisms in birds could be different. On the reduction of assessment factor for fish: VKM opposes to the reduction of assessment factor for dithianon in fish because the data from acute toxicity tests cannot be extrapolated to chronic toxicity, and because the factor should reflect not only the variation in interspecies sensitivity, but also the uncertainty involved in extrapolation from laboratory tests to the field situation. On the choice of end point in risk assessment for fish: The VKM panel considers the NOEC of dithianon for fish determined from the study at pH 7.9 not to be adequate for the more acidic Norwegian surface waters, and recommends using the data from the test performed at pH 6.5. On the formulation studies for aquatic organisms: It is the opinion of the VKM panel that the formulation studies may be used together with corresponding studies with the active ingredients as long as the studies compared are performed and evaluated according to the same principles. However, VKM notes that the formulation tests as well as the tests of the active ingredients have been performed at high pH values, which are not representative to most Norwegian surface waters. Thus, the toxic effect of dithianon shown in these tests are likely to be lower than expected under typical conditions in Norway. On the assessment factors for concentration addition in fish: It is the opinion of the VKM panel that a reduction in assessment factor for one component in a mixture cannot be used for a formulation containing components for which a similar reduction has not been accepted. On effect studies of active substances and formulations on non-target arthropods: The VKM panel shares the view of KemI that the risk assessment should be based on all available information, including the studies presented for the active substances. On the endpoint in earthworm risk assessment: VKM supports the view of KemI that the observed effects of pyrimethanil on reproduction of earthworms should be considered in the risk assessment of Malakite.

Author(s):  
Jan Zloch ◽  
Magdalena Daria Vaverková ◽  
Dana Adamcová ◽  
Maja Radziemska ◽  
Tomáš Vyhnánek ◽  
...  

Landfills are the most broadly used methods for the disposal of municipal solid waste (MSW). Leachate can be contaminated with pollutants that may pose a threat to the landfill surrounding namely soil, groundwater and surface waters.. Examination of leachate composition is determinative in long-term impact of landfills on the environment and human health. Moreover, it is essential to assess such prior knowledge for prevention of negative outcomes. The evaluation of the seasonal changes of landfill leachate and rainwater composition is presented in this paper. Research samples of leachate and rainwater were collected from February till June of 2017 (still ongoing) and analyzed for pH, electrical conductivity, dissolved oxygen, series of trace elements, Subsequently the test of leachate toxicity for higher plants (Sinapis alba L.) was carried out. Up to now, the results do not indicate significant seasonal difference in landfill leachate composition, however the toxicity tests provided on Sinapis alba L. demonstrate that landfill leachates can present a significant source of contamination. This research can serve practical tools for evaluating quality and risk assessment for landfill leachate.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Dean Leverett ◽  
Graham Merrington ◽  
Mark Crane ◽  
Jim Ryan ◽  
Iain Wilson

AbstractDiclofenac is a nonsteroidal anti-inflammatory human and veterinary medicine widely detected in European surface waters, especially downstream from Wastewater Treatment Plants (WWTPs). Veterinary uses of diclofenac in Europe are greatly restricted, so wastewater is the key exposure route for wildlife. Proposed Environmental Quality Standards (EQS) which include an assessment of toxicity to aquatic organisms are under consideration by the European Commission (EC) to support the aims of the Water Framework Directive (WFD). The EC approach favours the use of a deterministic (single test value and an assessment factor) approach to the derivation of a direct toxicity EQS for diclofenac, resulting in an EQS of 0.040 µg L−1 based on a single mesocosm study. In this paper, we discuss potential issues with this approach with respect to the EC’s own guidance on EQS derivation and derive an evidence-driven alternative EQS of 0.126 µg L−1 using a probabilistic (species sensitivity distribution) approach that accounts for all of the reliable and relevant data and is in accordance with the guidance. Europe-wide freshwater monitoring data for diclofenac are used in an indicative compliance assessment using the EC and the alternative evidence-driven EQS. The implications of using only some data to derive an EQS that does not adhere to the guidance, compared to a guidance-compliant approach that uses all the data available are also discussed.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Barbara Kubickova ◽  
Carmel Ramwell ◽  
Klara Hilscherova ◽  
Miriam Naomi Jacobs

AbstractRegulatory hazard and risk assessment of endocrine-active substances currently specifies four modes of action: interference with sex hormone (oestrogen, androgen) pathways, steroidogenesis, and thyroid hormone signalling. This does not encompass the full complexity of the endocrine system and its extended interfaces with environmental pollutants that can potentially disrupt the carefully maintained balance. Here we take the retinoid signalling pathway as a European case study for both, under- and unregulated endocrine pathways and outline the different levels of interference, discuss their adversity, and indicate crosstalk to other signalling pathways. Retinoid compounds already exist in drinking water sources, occur naturally in cyanobacterial blooms and/or enter surface waters via wastewater discharge, where they pose a potential hazard to the environment and human health - a situation that can be expected to worsen due to water shortages induced by climate-change and population growth. We briefly review relevant aspects of current endocrine disruptor (ED) testing for regulatory purposes and then expand upon the needs for inclusion of disruption of retinoid signalling in (ED) regulatory safety assessment contributing to adverse health outcomes that include cognitive function and neurological disease. An overview of developmental effects of retinoid signalling disruption across species highlights critical processes and potential crosstalk with other signalling pathways. A focused weight of evidence-based evaluation of the biologically plausible associations between neurological disorders and altered retinoid signalling highlights the evidence gaps. We show that monitoring only a limited number of anthropogenic priority chemicals in water is insufficient to address the environmental risks of retinoid signalling disruption. To comprehensively assess impacts on the endpoints, processes, and pathways of the endocrine system that are most vulnerable to chemical interference we need further investigation of the true mixture composition in environmental matrices. On a weight of evidence-basis this information can then be integrated into a reliable, inclusive, quantitative approach that ultimately accommodates all the critical pathways. By focusing on the retinoid signalling pathway, we intend to improve the scope and relevance of an integrated approach for the risk assessment of endocrine disruptors.


2021 ◽  
Author(s):  
Dean Leverett ◽  
Graham Merrington ◽  
Mark Crane ◽  
Jim Ryan ◽  
Iain Wilson

Abstract Diclofenac is a nonsteroidal anti-inflammatory human and veterinary medicine widely detected in European surface waters, especially downstream from Wastewater Treatment Plants. Veterinary uses of diclofenac in Europe are greatly restricted, so wastewater is the key exposure route for wildlife. Proposed Environmental Quality Standards (EQS) which include an assessment of toxicity to aquatic organisms are under consideration by the European Commission (EC) to support the aims of the Water Framework Directive (WFD). The EC approach favours the use of a deterministic (single test value and an assessment factor) approach to the derivation of a direct toxicity EQS for diclofenac, resulting in an EQS of 0.040 µg L− 1 based on a single mesocosm study. In this paper, we discuss potential issues with this approach with respect to the EC’s own guidance on EQS derivation and derive an evidence-driven alternative EQS of 0.126 µg L− 1 using a probabilistic (Species Sensitivity Distribution) approach that accounts for all of the reliable and relevant data and is in accordance with the guidance. Europe-wide freshwater monitoring data for diclofenac are used in an indicative compliance assessment using the EC and the alternative evidence-driven EQS. The implications of using only some data to derive an EQS that does not adhere to the guidance, compared to a guidance compliant approach that uses all the data available is also discussed.


Sign in / Sign up

Export Citation Format

Share Document