scholarly journals Impact of the Spatial Resolution of Satellite’s Data for Mapping Land use Land Cover in Karmala Tehsil, Solapur, India

Author(s):  
Sanket Kolambe ◽  
Jeet Raj ◽  
Krishna Loahkare ◽  
Shital Mane ◽  
Vikrant Nikam

Land use and land cover (LULC) classification mapping is important for evaluating, monitoring, protecting and planning for land resources. A key factor in extracting desired information from satellite images is choosing the right the spatial resolution. The scale of a pixel on the ground is known as spatial resolution. A pixel is the smallest ‘dot' that makes up an optical satellite image which defines the level of detail as in image. In this paper estimation of the areal extent of water, built up, barren land, vegetation land and fallow land classes with its classification accuracy were reviewed particularly for January 2013 and November 2016 in Karmala tehsil of Solapur district, India. LULC is implied by different spatial resolution images of Advanced Wide Field Sensor (AWiFS), Linear Imaging Self Scanning Sensor (LISS-III), Landsat-8 Operational Land Imager (OLI) and Sentinel-2A imageries in QGIS environment while the classification was carried out using the maximum likelihood algorithm (MLA). The classified maps obtained from AWiFS and LISS-III sensors, as well as Sentinel-2A and Landsat-8 OLI data sets, were compared separately.  Spatial analysis depicts that the Kappa coefficient of Sentinal-2A, Landsat-8, LISS III and AWiFS was found 96.96%, 91.64%, 87.30% and 89.36%. Furthermore, overall accuracy of was found to be 99.07%, 94.49%, 89.84% and 94.08% respectively. The accuracy of the classified image with higher spatial resolution (Sentinal-2A) proved more informative than that of lower resolution (AWiFS) sensor. On the response, the finer spatial resolution of Sentinal-2A (10 m) delivered more precise details and enhanced LULC classification accuracy most reliably than the coarser spatial resolution of Landsat-8 (30m), LISS III (23m) and AWiFS (56m) image. A perusal of data revealed that the overall accuracy and Kappa coefficient was found proportionate to spatial resolution of satellite imageries. The higher resolution spatial data also greatly reduces the mixed-pixel problem. The study revealed that the spatial resolution plays an important role and affects classification details and accuracy of LULC level.

2018 ◽  
Vol 7 (2.17) ◽  
pp. 101
Author(s):  
K V. Ramana Rao ◽  
Prof P. Rajesh Kumar

Land use and land cover information of an area has got importance in various aspects mainly because of various development activities that are taking place in every part of the world. Various satellite sensors are providing the required data collected by remote sensing techniques in the form of images using which the land use land cover information can be analyzed.  Constistency of Landsat satellite is illustrated with two time periods such as Operational Land Imager (OLI) of 2013 and consecutive 2014 procured by earth explorer with quantified changes for the same period in visakhapatnam of hudhud cyclone. Since this city is consisting of mainly urban, vegetation, few water bodies, some area of agriculture and barren,five classes have been chosen from the study area. The results indicate that due to the hudhud event some changes took place.  vegetation and built-up land have been increased by An increase of 19.1% (6.3 km2) and 11% (5.36 km2) has been observed in the case of vegetation and built up area  where as a decrease of 1.2% (4.06 km2), 6.1% (1.70 km2) and 1.2% (0.72 km2) has been observed in the case of  agriculture, barren land, and water body respectively. With the help of available satellite imagery belonging to the same area and of different time periods along with the  change detection techniques landscape dynamics have been analyzed. Using various classification algorithms along with the data available from the satellite sensor the land use and land cover classification information of the study area has been obtained. The maximum likelihood algorithm provided better results compared to other classification techniques and the accuracy achieved with this algorithm is 99.930% (overall accuracy) and 0.999 (Kappa coefficient).  


Author(s):  
Hayder Dibs ◽  
Hashim Ali Hasab ◽  
Ammar Shaker Mahmoud ◽  
Nadhir Al-Ansari

AbstractAdopting a low spatial resolution remote sensing imagery to get an accurate estimation of Land Use Land Cover is a difficult task to perform. Image fusion plays a big role to map the Land Use Land Cover. Therefore, This study aims to find out a refining method for the Land Use Land Cover estimating using these steps; (1) applying a three pan-sharpening fusion approaches to combine panchromatic imagery that has high spatial resolution with multispectral imagery that has low spatial resolution, (2) employing five pixel-based classifier approaches on multispectral imagery and fused images; artificial neural net, support vector machine, parallelepiped, Mahalanobis distance and spectral angle mapper, (3) make a statistical comparison between image classification results. The Landsat-8 image was adopted for this research. There are twenty Land Use Land Cover thematic maps were generated in this study. A suitable and reliable Land Use Land Cover method was presented based on the most accurate results. The results validation was performed by adopting a confusion matrix method. A comparison made between the images classification results of multispectral imagery and all fused images levels. It proved the Land Use Land Cover map produced by Gram–Schmidt Pan-sharpening and classified by support vector machine method has the most accurate result among all other multispectral imagery and fused images that classified by the other classifiers, it has an overall accuracy about (99.85%) and a kappa coefficient of about (0.98). However, the spectral angle mapper algorithm has the lowest accuracy compared to all other adopted methods, with overall accuracy of 53.41% and the kappa coefficient of about 0.48. The proposed procedure is useful in the industry and academic side for estimating purposes. In addition, it is also a good tool for analysts and researchers, who could interest to extend the technique to employ different datasets and regions.


Land use Land cover classification is an important aspect for managing natural resources and monitoring environmental changes. Urban expansion becomes one of the major challenges for the administrator. The LANDSAT 8 images are processed using the open source GRASS (Geographic Resource Analysis Support System). Unsupervised classification technique based on Ant Colony Optimization (ACO) algorithm has been modified and proposed as Modified Ant Colony Optimization (MACO) for LULC classification. In order to improve the classification accuracy of the proposed algorithm, we have combined spatial, spectral and texture features to extract more information of homogeneous land surface. The classification accuracy of the proposed algorithm has been compared with other unsupervised classification methods such as k-means, ISODATA and ACO algorithms. The overall classification accuracy of proposed unsupervised MACO algorithm has been increased by 11.24 %, 8.24% for open space and water bodies class, respectively as compared to ACO algorithm.


Author(s):  
D. Akyürek ◽  
Ö. Koç ◽  
E. M. Akbaba ◽  
F. Sunar

<p><strong>Abstract.</strong> In recent years, especially in metropolitan cities such as Istanbul, the emerging needs of the increasing population and demand for better air transportation capacity have led to big environmental changes. One of them is originated due to the construction of the new airport (Istanbul Grand Airport &amp;ndash; IGA), located on the Black Sea coast on the European side of Turkey and expected as “The biggest hub in Europe” by the early 2020s. The construction has five phases and first construction phase is scheduled to finish up by the end of 2018. With an advanced space technologies including remote sensing, environmental consequences due to Land Use/Land Cover changes (LULC) can be monitored and determined efficiently. The aim of this paper is to analyse LULC changes especially in the forest areas and water bodies by using two different satellite image dataset. In this context, supervised classification method and different spectral indices are applied to both Landsat-8 (2013&amp;ndash;2017) and Sentinel 2A (2015&amp;ndash;2017) image datasets to demonstrate the total and annual changes during the construction of the first phase. The efficiency of two datasets is outlined by comparison of the output thematic map accuracies.</p>


Land use/Land cover (LU/LC) change analysis is the present-day challenging task for the researchers in defining the environmental change across the world in the field of remote sensing and GIS (Geographic Information System). This paper analyzes the LU/LC changes between the years 2009 and 2019 in the region of Javadi Hills located in Tamil Nadu, India. Images from the Indian remote sensing satellite Resourcesat-1 LISS III and American earth observation satellite Landsat-8 were used for analyzing the LU/LC change for the study area. In this work, the classification was performed by using the hybrid approach of unsupervised and supervised classifiers. The classified LU/LC map for the study area defines forest and non-forest covered region. The key objective of this work was to identify the percentage of LU/LC change occurred in our study area for the years 2009 to 2014 and 2014 to 2019. Observing and examining the changes occurred in the study area provides a clear view to the land resources management to take effective measures in protecting the environment.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Farhan Khan ◽  
Bhumika Das ◽  
R. K. Mishra ◽  
Brijesh Patel

Abstract Remote sensing and Geographic Information System (GIS) are the most efficient tools for spatial data processing. This Spatial technique helps in generating data on natural resources such as land, forests, water, and their management with planning. The study focuses on assessing land change and surface temperature for Nagpur city, Maharashtra, for two decades. Land surface temperature and land use land cover (LULC) are determined using Landsat 8 and Landsat 7 imageries for the years 2000 and 2020. The supervised classification technique is used with a maximum likelihood algorithm for performing land classification. Four significant classes are determined for classification, i.e., barren land, built-up, vegetation and water bodies. Thermal bands are used for the calculation of land surface temperature. The land use land cover map reveals that the built-up and water bodies are increasing with a decrease in vegetation and barren land. Likewise, the land surface temperature map showed increased temperature for all classes from 2000 to 2020. The overall accuracy of classification is 98 %, and the kappa coefficients are 0.98 and 0.9 for the years 2000 and 2020, respectively. Due to urban sprawl and changes in land use patterns, the increase in land surface temperature is documented, which is a global issue that needs to be addressed.


2018 ◽  
Vol 10 (9) ◽  
pp. 3052 ◽  
Author(s):  
Raju Rai ◽  
Yili Zhang ◽  
Basanta Paudel ◽  
Bipin Acharya ◽  
Laxmi Basnet

Land use and land cover is a fundamental variable that affects many parts of social and physical environmental aspects. Land use and land cover changes (LUCC) has been known as one of the key drivers of affecting in ecosystem services. The trans-boundary Gandaki River Basin (GRB) is the part of Central Himalayas, a tributary of Ganges mega-river basin plays a crucial role on LUCC and ecosystem services. Due to the large topographic variances, the basin has existed various land cover types including cropland, forest cover, built-up area, river/lake, wetland, snow/glacier, grassland, barren land and bush/shrub. This study used Landsat 5-TM (1990), Landsat 8-OLI (2015) satellite image and existing national land cover database of Nepal of the year 1990 to analyze LUCC and impact on ecosystem service values between 1990 and 2015. Supervised classification with maximum likelihood algorithm was applied to obtain the various land cover types. To estimate the ecosystem services values, this study used coefficients values of ecosystem services delivered by each land cover class. The combined use of GIS and remote sensing analysis has revealed that grassland and snow cover decreased from 10.62% to 7.62% and 9.55% to 7.27%, respectively compared to other land cover types during the 25 years study period. Conversely, cropland, forest and built-up area have increased from 31.78% to 32.67%, 32.47–33.22% and 0.19–0.59%, respectively in the same period. The total ecosystem service values (ESV) was increased from 50.16 × 108 USD y−1 to 51.84 × 108 USD y−1 during the 25 years in the GRB. In terms of ESV of each of land cover types, the ESV of cropland, forest, water bodies, barren land were increased, whereas, the ESV of snow/glacier and grassland were decreased. The total ESV of grassland and snow/glacier cover were decreased from 3.12 × 108 USD y−1 to 1.93 × 108 USD y−1 and 0.26 × 108 USD y−1 to 0.19 × 108 USD y−1, respectively between 1990 and 2015. The findings of the study could be a scientific reference for the watershed management and policy formulation to the trans-boundary watershed.


2018 ◽  
Vol 34 (14) ◽  
pp. 1552-1567
Author(s):  
Divyesh Varade ◽  
Anudeep Sure ◽  
Onkar Dikshit

Author(s):  
M. A. Saharan ◽  
N. Vyas ◽  
S. L. Borana ◽  
S. K. Yadav

<p><strong>Abstract.</strong> Land Use – Land Cover (LULC) classification mapping is an important tool for management of natural resources of an area. The remote sensing technology in recent times has been used in monitoring the changing patterns of land use-land cover. The aim of the study is to monitor the LULC changes in Jodhpur city over the period 1990–2018. Satellite imagery of Landsat 8 OLI (June, 2018) &amp;amp; Landsat TM (Oct, 1990) were used for classification analysis. Supervised classification-maximum likelihood algorithm is used in ENVI software to detect land use land cover changes. Five LULC categories were used, namely- urban area, mining area, vegetation, water bodies and other area (Rock outcrops and barren land). The LULC classified maps of two different periods i.e. 2018 and 1990 were generated on 1<span class="thinspace"></span>:<span class="thinspace"></span>50,000 scale. The accuracy assessment method was used to measure the accuracy of classified maps. This study shall be of good assistance to the town planners of Jodhpur city for the purpose of the sustainable development as per the master plan 2031.</p>


2020 ◽  
Vol 2 (2) ◽  
pp. 87-99
Author(s):  
M. Mamnun ◽  
S. Hossen

The main purpose of this study is to describe the spatio-temporal analysis of land use and land cover status and to identify land cover changes, especially of deforestation and degradation in evergreen, semi-evergreen rainforests of Chittagong Hill Tracts from 1988-2018 by using Landsat 8 OLI-TIRS and Landsat 5 TM satellite imagery. The ArcGIS v10.5 and ERDAS Imagine v15 software were used to process satellite imageries and assess quantitative data for land-use change assessment of this study area. The study revealed that the area of forest land and water body decreased by 17.92% and 5.43% respectively from 1988-2018. On the other hand, the area of agricultural land, barren land and settlement increased by 45.66%, 312.08% and 240.01% respectively. If the present condition remains constant, the projection of future land-use/ land cover changes for the next 15 years will predict that more than 7.37% dense forest (2253.83 ha) land will be decreased and 19.60% agricultural will be converted to other land uses. This study suggests that proper policy should be adopted urgently to conserve residual forest coverage and restore it to regain its past appearance.


Sign in / Sign up

Export Citation Format

Share Document