scholarly journals Site-specific Nutrient Management for Enhancing Crop Productivity

Author(s):  
Ramesh Chand Bana ◽  
S. S. Yadav ◽  
A. C. Shivran ◽  
Prabhoo Singh ◽  
Vinod Kumar Kudi

Nutrient management plays a crucial role in achieving self-sufficiency in food grain production. High price index of chemical fertilizers coupled with mount pollution problem gave rise to interest in precision nutrient management tools. Site specific nutrient management (SSNM) increases and maintains the yield by optimizing the balance between supply and demand of nutrients. Nutrient application as per SSNM concept resulted in significantly higher grain yields of maize, rice, wheat and other important crop over recommended dose of fertilizers (RDF) and farmer’s fertilizers practices. The SSNM is real time feeding of crops with nutrients while recognizing the inherent spatial variability which enhances crop productivity, nutrient use efficiency (NUE) and avoids nutrient wastage. For effective SSNM, utilization of different sensing devices of soil and plant nutrient status, decision support systems, GIS, remote sensing, simulation models and nenoparticles play an important role. Traditional techniques like balanced fertilization, use of nitrification inhibitors and slow-release nitrogenous fertilizers (SRNF) are also used to attain higher productivity and reduce environmental pollution. This paper deals with the SSNM approaches which are able to enhance crop productivity, NUE and sustainability.

2018 ◽  
Vol 102 (4) ◽  
pp. 8-10
Author(s):  
Fernando García ◽  
Andrés Grasso ◽  
María González Sanjuan ◽  
Adrián Correndo ◽  
Fernando Salvagiotti

Trends over the past 25 years indicate that Argentina’s growth in its grain crop productivity has largely been supported by the depletion of the extensive fertility of its Pampean soils. Long-term research provides insight into sustainable nutrient management strategies ready for wide-scale adoption.


SOIL ◽  
2016 ◽  
Vol 2 (2) ◽  
pp. 147-162 ◽  
Author(s):  
Ariane Krause ◽  
Thomas Nehls ◽  
Eckhard George ◽  
Martin Kaupenjohann

Abstract. Andosols require the regular application of phosphorus (P) to sustain crop productivity. On an Andosol in NW Tanzania, we studied the short-term effects of amending standard compost, biogas slurry and CaSa compost (containing biochar and sanitized human excreta) on (i) the soil's physico-chemical properties, on (ii) biomass growth and crop productivity, and on (iii) the plants' nutrient status. The practice-oriented experiment design included the intercropping of seven locally grown crop species planted on 9 m2 plots with five repetitions arranged as a Latin rectangle. Differences in plant growth (biomass production and crop yield, e.g., of Zea mays) and crop nutrition (total C, N, P, K, Ca, Mg, Zn, etc.) were related to pH, CEC (cation exchange capacity), total C and the availability of nutrients (N, P, K, etc.) and water (water retention characteristics, bulk density, etc.) in the soil. None of the amendments had any significant effect on soil water availability, so the observed variations in crop yield and plant nutrition are attributed to nutrient availability. Applying CaSa compost increased the soil pH from 5.3 to 5.9 and the level of available P from 0.5 to 4.4 mg per kg. Compared to the control, adding biogas slurry, standard compost and CaSa compost increased the aboveground biomass of Zea mays by, respectively, 140, 154 and 211 %. The grain yields of maize on soil treated with biogas slurry, standard compost and CaSa compost were, respectively, 2.63, 3.18 and 4.40 t ha−1, compared to only 1.10 t ha−1 on unamended plots. All treatments enhanced crop productivity and increased the uptake of nutrients into the maize grains. The CaSa compost was most effective in mitigating P deficiency and soil acidification. We conclude that all treatments are viable as a substitute for synthetic fertilizers. Nevertheless, further steps are required to integrate the tested soil amendments into farm-scale nutrient management and to balance the additions and removals of nutrients, so that the cycle can be closed.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1349
Author(s):  
John Havlin ◽  
Ron Heiniger

Increasing crop productivity per unit of land area to meet future food and fiber demand increases both soil nutrient removal and the importance of replenishing soil fertility through efficient nutrient management practices. Significant progress in enhancing nutrient-use efficiency in production agriculture requires improved estimates of plant-available nutrients in the root zone, enhanced crop response to applied nutrients, and reduced offsite nutrient transport. This special issue, Soil Fertility Management for Better Crop Production, presents 15 manuscripts that advance our knowledge of interrelated soil, plant, and management factors important to increasing the nutrient availability and crop recovery of applied nutrients.


2015 ◽  
Vol 2 (2) ◽  
pp. 1221-1261 ◽  
Author(s):  
A. Krause ◽  
T. Nehls ◽  
E. George ◽  
M. Kaupenjohann

Abstract. Andosols require the regular application of phosphorus (P) to sustain crop productivity. In a practice oriented field experiment at an Andosol site in NW Tanzania, the effects of various soil amendments (standard compost, urine, biogas slurry and CaSa-compost [biochar and sanitized human excreta]) on (i) the productivity of locally grown crop species, on (ii) the plants' nutrient status and on (iii) the soil's physico-chemical properties were studied. None of the amendments had any significant effect on soil moisture, so the observed variation in crop yield and plant nutrition reflected differences in nutrient availability. The application of CaSa-compost increased the level of available P in the top-soil from 0.5 to 4.4 mg kg−1 and the soil pH from 5.3 to 5.9. Treatment with biogas slurry, standard compost and CaSa-compost increased the above-ground biomass of Zea mays by, respectively, 140, 154 and 211 %. The grain yields of maize on soil treated with biogas slurry, standard compost and CaSa-compost were, respectively, 2.63, 3.18 and 4.40 t ha−1, compared to only 1.10 t ha−1 on unamended plots. All treatments enhanced crop productivity and increased the uptake of nutrients into the maize grains. The CaSa-compost was especially effective in mitigating P deficiency and soil acidification. We conclude that all treatments are viable as substitute for synthetic fertilizers. However, further steps are required to integrate the tested soil amendments into farm-scale nutrient management and to balance the additions and removals of nutrients, so that the loop can be closed.


Author(s):  
Shamsudheen Mangalassery ◽  
Palpandian Preethi ◽  
Bommanahalli Munivenkate Muralidhara ◽  
Mundakochi Gangadhara Nayak

Nutrient management plays a key role in the productivity and sustainability of land resources. Balanced application of mineral nutrition to the crops not only helps to realise increased yields but also to prevent land degradation. Cashew is generally grown as a rainfed crop in tropical regions with limited attention on nutrient management. Making an informed decision on the scientific aspects of the nutrient application in terms of the right amount, time and place of application are important for the growers. The mobile apps come handy in this direction because the farmers can themselves find out nutrient management schedule as per the field conditions. A mobile app for nutrient management in cashew was developed which takes care of varied field situations of farmers and was demonstrated in the farmer’s fields under participatory research mode. The app helped farmers to devise their own site-specific nutrient management. The field implementation for the site-specific nutrient management with the help of a mobile app showed improvement in soil and leaf nutrient status as well as the raw cashewnut yield. The yield improvement was in the range of 58 to 67% and the BC ratio was increased by 9 to 47% compared to the initial status. The mobile app DCR-Cashew Nutrient Manager was useful to empower the farmers, and field implementation was beneficial to improve the productivity, income and ecosystem sustainability by improving the nutrient balance in the soil.


2021 ◽  
Vol 13 (8) ◽  
pp. 4551
Author(s):  
Mehakpreet Kaur Randhawa ◽  
Salwinder Singh Dhaliwal ◽  
Vivek Sharma ◽  
Amardeep Singh Toor ◽  
Sandeep Sharma ◽  
...  

Nutrient use efficiency is reported as a strong indicator of the buildup soil nutrient status for nutritional security of crops through an integrated nutrient management approach under a rice-wheat system. The data revealed that integrated application of manures and fertilizers reported maximum organic carbon (0.39%) in the treatment receiving 100% of the recommended dose of fertilizers (RDF) + farmyard manure and lowering the pH to 6.39. The maximum available N (360.8 kg ha−1) was found in 100% RDF + press mud treatment; available P (66.30 kg ha−1) was found in 75% RDF + poultry manure; and available K, Zn, Cu, and Fe (226.3 kg ha−1 and 2.220, 0.732, and 36.87 mg kg−1, respectively) in 100% RDF + farmyard manure treatments. Similarly, total macro- and micronutrient content in soil increased with the addition of organic manures alone or in combination with chemical fertilizers. The highest agronomic efficiency and utilization efficiency of nitrogen (41.83 and 102.55 kg kg−1, respectively) and phosphorous (83.57 and 204.9 kg kg−1, respectively) were recorded in the treatment receiving 75% RDF + poultry manure. This study concluded that the integrated application of manures and chemical fertilizers is a must for improving soil nutrient status and nutrient use efficiency and ultimately enhances nutritional security under a rice-wheat system.


Author(s):  
Subhashis Saren ◽  
Antaryami Mishra ◽  
Pradip Dey

A field experiment was conducted to formulate the fertilizer prescription equations for achieving desired yield target of green gram (Vigna radiata L. Wilczek) during 2013-14. Three fertility gradient stripes were created by applying no fertilizer, recommended dose of fertilizer (RDF) and double of the RDF in rice in order to develop three fertility gradient stripes during kharif. Each strip was again sub-divided into 24 sub plots and green gram was cultivated with different treatment combinations. One plot was kept as absolute control while FYM was applied in two sub-plots and rest 21 plots were applied with different graded doses of fertilizers. Initial and post harvest soil nutrient status, nutrient uptake, nutrient requirement, soil efficiency, fertilizer efficiency and yield data were recorded. The highest yield (12.15 q ha-1) was achieved with application of 30:50:50 (N: P2O5: K2O). Fertilizer prescription equations were formulated by multiple regression equation for site specific nutrient management on the basis of initial soil fertility status and targeted yield approach. The equations and ready reckoner were developed for higher production with optimum use of fertilizers according to desired yield target of green gram with sustainable manner.


2021 ◽  
Vol 13 (16) ◽  
pp. 9136
Author(s):  
Arvind Kumar Shukla ◽  
Sanjib Kumar Behera ◽  
Chandra Prakash ◽  
Ashok Kumar Patra ◽  
Ch Srinivasa Rao ◽  
...  

The deficiencies of nutrient elements and inappropriate nutrient management practices in agricultural soils of the world is one of the reasons for low crop productivity, reduced nutritional quality of agricultural produce, and animal/human malnutrition. We carried out the present study to evaluate the single and multi-nutrient deficiencies of sulfur (S) and micronutrients (zinc (Zn), boron (B), iron (Fe), copper (Cu) and manganese (Mn)) in agricultural soils of India for their effective management to achieve sustainable crop production, improved nutritional quality in crops and better animal/human health. Altogether, 24,2827 surface soil samples (0 to 15 cm depth) were collected from the agriculture fields of 615 districts in 28 states of India and were analyzed for available S and micronutrient concentration. The concentration of available S and micronutrients varied widely. There were variable and widespread deficiencies of S and micronutrients in different states. The deficiencies of S, Zn and B were higher compared to the deficiencies of Fe, Cu and Mn. There were occurrences of two-nutrient (namely S + Zn, Zn + B, S + B, Zn + Fe Zn + Mn, S + Fe, Zn + Cu and Fe + B), three-nutrient (namely S + Zn + B, S + Zn + B and Zn + Fe + B) and four-nutrient (namely Zn + Fe + Cu + Mn and Zn + Fe + Cu + Mn + B) deficiencies in different extents. This information could be used by various stakeholders for production, supply and application of the right kind of fertilizers in different districts, states and agro-ecological regions of India for better crop production, crop nutritional quality, nutrient use efficiency and soil and environmental health. This will also help in a greater way to address the issue of malnutrition in human/animals.


2017 ◽  
Vol 54 (6) ◽  
pp. 874-887 ◽  
Author(s):  
KRISHNENDU RAY ◽  
HIRAK BANERJEE ◽  
KALLOL BHATTACHARYYA ◽  
SUDARSHAN DUTTA ◽  
AMIT PHONGLOSA ◽  
...  

SUMMARYThe area under hybrid maize cultivation is increasing rapidly across South Asia. However, information regarding the proper nutrient management for modern stay-green maize hybrids in India is not adequate resulting in low productivity. Existing nutrient management practices are not able to capture the momentum change in the scenario of soil nutrient supply capacity and plant nutrient demand for achieving higher yield target. The present study aims at establishing the site-specific nutrient management (SSNM) package for an inceptisol (West Bengal, India). Soil indigenous nutrient supply capacity and nutrient use efficiency was also evaluated by using the nutrient omission plot technique. The experiment was laid out in strip-plot design, assigning three maize hybrids (P 3522, P 3396 and Rajkumar) in the vertical strip and nine fertilizer treatments [50% RDF/Recommended dose of fertilizer, 75% RDF, 100% RDF (200-60-60 kg N-P2O5-K2O ha−1), 125% RDF, 150% RDF, 100% PK, 100% NK, 100% NP and control (zero-NPK)] in the horizontal strip, with three replications. Results of the experiment revealed that the differences among cultivars were generally non-significant. The maize hybrids showed greater yield response to fertilization with N (4.14 Mg ha−1) during winter, followed by K (2.54 Mg ha−1) and P (1.58 Mg ha−1). Indigenous nutrient supply was estimated 107.2, 37.6 and 107.7 kg ha−1 for N, P and K, respectively. Both average agronomic efficiency (AE) and recovery efficiency (RE) were increased with 50% RDF and it decreased with further increase in NPK levels up to 150% RDF. The average internal efficiency (IE) was higher with 50% RDF closely followed by the treatment with absence of N. As grain yields and gross return over fertilizer (GRF) under 75 to 150% NPK treatments were similar, nutrient doses of 150 kg N, 45 kg P2O5 and 45 kg K2O ha−1 were recommended as optimum for maize hybrids.


Sign in / Sign up

Export Citation Format

Share Document