Effect of Land Configuration and Crop Residue – Mulch on Millet Performance in Minna, Savanna of Nigeria

Author(s):  
P. C. Eze ◽  
A. J. Odofin ◽  
A. Attahiru ◽  
I. N. Onyekwere ◽  
B. A. Lawal

A 2 x 3 factorial experiment was conducted in cropping season at the old Teaching and Research Farm, Federal University of Technology, Minna, to determine the effect of land configuration and crop residue – mulch on the growth and yield of millet in Minna, Southern guinea savanna zone of Nigeria. It was a randomized complete block design with two types of land configuration (ridge and flat surface) and three mulch application rates (0, 10 and 15 t/ha), replicated three times. Composite soil samples were collected from the experimental site at 0 – 15 and 15 – 30 cm depths prior to the commencement of this study, for the determination of initial soil physicochemical properties. Crop growth parameters measured were plant height, number of leaves per plant, number of tillers per plant and leaf area index at 3, 6, 9 and 12 weeks after planting. Yield indices determined were panicle length and stover yield. Data collected were subjected to analysis of variance at 0.05 level of significance, while means separation was done using Duncan’s multiple range test. Findings in this study showed that planting on ridge resulted in taller (P ≤ 0.05) millet plants and a higher number of leaves per plant, a higher number of tillers per plant and higher leaf area index than planting on the flat. Plant height, the number of leaves per plant, the number of tillers per plant, leaf area index, panicle length and stover yield increased with increasing mulch application rates.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Samuel Maina ◽  
Rossa Nyoike Ng’endo

Maize (Zea mays L.) is a significant food security crop in Kenya and it serves as the main source of nutrition and calories among the small-holder farmers. The overall maize yields per hectare have been fluctuating in the past few years posing a great risk to food security. Among the stress factors associated with maize yield loss include plant-feeding nematodes. In this regard, this study was conducted to evaluate the impacts of plant-parasitic nematodes specifically Scutellonema spp. under field conditions on maize performance in Mwea, Kenya. The field trials were laid out in a randomized complete block design with each treatment comprising of four replicates. The treatments included maize plots without nematicide (MPWN) and control plots treated with nematicide. The experiments were conducted in two trials. Soil samples were taken at a 0–20 cm depth at monthly intervals during 2018–2019. During the two trials, MPWN recorded significantly lower plant height and number of leaves per plant. Correlation analysis revealed a significant negative relationship between Scutellonema abundance with leaf area index, plant height, and number of functional leaves in MPWN during the 2019 trial. This implies that high population of Scutellonema perhaps has the potential to affect leaf area index, plant height, number of leaves per plant, which are aspects that in turn influence maize productivity. Therefore, holistic sustainable management practices to control Scutellonema spp. in maize fields such as use of organic amendments, resistant maize cultivars, and antagonistic organisms are crucial in order to alleviate negative impacts linked to Scutellonema infestation.


Author(s):  
Bulbul Ahmed ◽  
Ahmed Khairul Hasan ◽  
Biswajit Karmakar ◽  
Md. Sahed Hasan ◽  
Fahamida Akter ◽  
...  

An experiment was carried out at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh during October 2014 to March 2015 to study the growth and yield performance of field pea varieties as influenced by date of sowing. The experiment comprised of two factors namely, date of sowing and variety. Date of sowing comprised of 29 October, 13 November and 28 November and the variety comprised of BARI motor-1, BADC motor-1, Natore local and Narail local. The experiment was laid out in a split plot design with three replications. The results indicate that all the growth characters were varied significantly at different days after. Those growth characters except leaf area index were highest for the crop sown on 28 November. The growth characters were highest in variety Natore local and lowest in Narail local except dry matter it was lowest in BADC motor-1. The interaction effect of 28 November sowing, Natore local was highest for all of the growth parameters except leaf area index it was highest on 13 November sowing and the interaction on 29 October sowing BARI motor-1 gave the lowest value. Most of the yield contributing parameters significantly affected by sowing date. The highest seed yield (827.7 kg ha-1) and other yield contributing characters were found on early sowing (13 November) and the lowest seed yield (534 kg ha-1) and other yield contributing characters was at 28 November sowing. Variety had significant effect on yield and yield contributing parameters. The highest seed yield (1032.2 kg ha-1) and Stover yield (3221.35 kg ha-1) was obtained from Natore local while Narail local gave lowest (469.1 kg ha-1) seed yield and lowest Stover yield. The interaction of 13 November with Natore local gave the highest seed yield (1319.3 kg ha-1) and lowest seed yield was produced by Narail local (330.35 kg ha-1) by late sowing (28 November). It can be concluded that, vegetative growth were highest at 28 November sowing and yield components gave highest value on 13 November sowing. Highest yield was produced by Natore local at 13 November sowing but yield was reduced drastically when the crop sown on 28 November. So, it is clear that the optimum date of sowing for field pea is at 13 November.


2020 ◽  
Vol 4 (1) ◽  
pp. 13-23
Author(s):  
Intan Dwi Lestari

This research aimed to determine the effect of spacing on the growth and yield of corn. It was conducted from July to November 2019 at the Experimental Plantation of Cereal Crops Research Institute (BalitSereal), Maros, South Sulawesi. The experimental method used was a randomized block design consisting of 4 treatments: J1= (100 cm x 50 cm) x 20 cm, one seed per hole; J2= (100 cm x 50 cm) x 30 cm, alternating between one seed per hole and two seeds per hole; J3= (100 cm x 50 cm) x 40 cm, two seeds per hole; J4= (100 cm x 50 cm) x 15 cm, one seed per hole. The observed variables were plant height, number of leaves, stem diameter, leaf area index, Anthesis Silking Interval (ASI), length of cob 1 and cob 2, diameter of cob 1 and cob 2, weight of shelled seeds/plant, weight of 100 seeds on cob 1 and cob 2, and production of shelled seeds/hectare. The experimental results showed that plant spacing affected the growth and production of maize. The J3 spacing (100 cm x 50 cm) x 40 cm with two seeds per hole significantly affected the leaf area index and gave the highest average stem diameter. The J2 spacing with (100 cm x 50 cm) x 30 cm with alternating between one seed per hole and two seeds per hole produced the highest production in terms of weight of shelled seeds/plant, weight of 100 seeds and yield of shelled seeds/hectare.


2020 ◽  
Vol 3 (2) ◽  
pp. 50-55
Author(s):  
Ramhari Gaire ◽  
Chudamani Pant ◽  
Nischal Sapkota ◽  
Rajan Dhamaniya ◽  
Tej Narayan Bhusal

AbstractA field experiment was carried out to study the effect of spacing and nitrogen level on growth and yield of maize in Parbat from February to July, 2019. The experiment was laid out in two Factorial Randomized complete Block Design (RCBD) comprising of spacing: 60×15 cm and 60×25 cm and nitrogen: 30, 60, 90 and 120 kg/ha level as treatment with three replications. “Arun-2” variety of maize was planted on clay loam and acidic soil (pH 5.3) having medium in total nitrogen (0.15%), medium in soil available phosphorus (48.1 kg/ha), medium in soil available potassium (218.8 kg/ha) and medium in organic matter content (2.92%). Result shows that yield was significantly increased with increment in N-level up to 90 kg N/ha. The grain yield (5.18 mt/ha) was significantly higher at 90 kg N/ha than at 30 and 60 kg N/ha but at par with 120 kg N/ha. Significant effect on grain yield due to spacing was observed. The grain yield (4.11 mt/ha) obtained at spacing 60×15 cm. Moreover, the highest grain yield showed that highest grain yield (4.33 mt/ha) was obtained under 90 kg N/ha plus 60×15 cm spacing. The result revealed that different spacing and nitrogen level significantly affect the plant height and leaf area index. The plant height and leaf area index were significantly high at close spacing (60×15 cm) and at 120 kg N/ha. Likewise, yield attributing characteristics like cob length, cob diameter, number of kernel/rows, number of kernel row, thousand gran weight were the highest at 90 kg/ha but as par with 120 kg/ha at close spacing (60×15 cm). This study suggested that maize production can be maximized by cultivating “Arun-2” maize fertilizing with 90 kg N/ha and maintaining 60×15 cm spacing.


Author(s):  
I. R. Danbima ◽  
I. J. Tekwa ◽  
A. T. Gani

Purpose: The aim of the study was to assess the effects of groundnut shell incorporation rates on the growth and yield of maize. Research methods: The study was carried out at the students’ demonstration farm of the Federal Polytechnic, Mubi, Adamawa State, in 2018. Seeds were sown on a prepared land treated with four (4) doses of groundnut shells (0, 25, 50 and 75 tons/ha) arranged in a randomized complete block design (RCBD), replicated 4 times. Each plot was marked out at 2.0 m length × 2.0 m width with 0.5 m gap between the replicated plots and blocks. Maize growth parameters were determined at 2, 4, 6 and 8 weeks after sowing and maize yield parameters were determined at 10 and 12 weeks after sowing (WAS). Findings: The groundnut shell application rates increased maize growth parameters such as, plant height, number of leaves per plant, leave area index, and stem girth, number of cobs per plant and cobs weight. The results revealed that plant height, number of leaves, leaf area index and stem girth were significantly (P≤ 0.05) influenced by the treatments, except for the control treatment at 2- WAS. The higher application rates (50 and 75 t/ha) of groundnut shell significantly (P≤ 0.05) influenced the plant growth components better than the 25 and 0 t/ha treatment rates. Research limitations: There were no limitations to report. Originality/Value: The results suggests that groundnut shell incorporation rate at 50 t/ha could be recommended as the most appropriate and profitable for high performance of maize plants in Mubi. The results generally suggest that maize plants may tolerate even higher rates of groundnut shell incorporation beyond the rates used in the study.


2021 ◽  
pp. 52-62
Author(s):  
Md. Omar Faruk ◽  
A. S. M. Iqbal Hussain ◽  
Md. Abu Yusuf ◽  
Md. Nazmul Hasan Mehedi

Management of applied nitrogen in rice field is one tool that could lead to increase in rice yield, but often ignored by most farmers. The experiment was carried out from April to July 2015 at the Agronomy Field Laboratory of Patuakhali Science and Technology University, Dumki, Patuakhali to find out the influence of different nitrogen management and variety on the yield performance of transplant Ausrice. The study consisted of four levels of nitrogen viz. Control (without N), 30 kg N ha-1, 60 kg N ha-1 and urea super granule @ 52 kg N ha-1 and four Transplanted aus rice varieties viz. KaliHitta, ChaitaBoro, Abdul Hai and Gota IRRI, and was laid out in a split-plot design with three replications. The levels of nitrogen were assigned in the main plot and varieties were allocated in the sub-plots. Nitrogen management, variety and their interactions exerted significant (P ≤ 0.05) influence on plant characters, yield contributing characters and yield of transplanted Aus rice. In the case of nitrogen management, the tallest plant was 161.60 cm, maximum leaf area index(2.97, the highest number of effective tillers hill-115, longest panicle 24.30 cm with the maximum number of filled grains as94.73, 1000-grain weight gave 29.97 g. Grain yield of 2.48 t ha-1 were obtained from USG @ 52 kg N ha-1 and the shortest plant height of 136.90 cm with lowest leaf area index of 1.78, lowest number of effective tillers hill-1 (8.43), shortest panicle (18.84 cm) with the lowest numbers of filled grains panicle-1 (53.18), 1000-grain weight (24.33 g) and grain yield (1.40 t ha-1) were obtained in control (N1=O, kg N ha-1). Among the varieties, ChaitaBoro gave the tallest plant height (151.60 cm) and maximum leaf area index (2.54). While the highest number of effective tillers hill-1 (12.20), longest panicle (22.42 cm) with the maximum number of filled grains panicle-1 (73.50), highest 1000-grain weight (27.41 g) and highest grain yield (2.39 t ha-1) were recorded from Gota IRRI than other varieties. In case of interaction, Gota IRRI Fertilized with USG at 52 kg N ha-1 produced the highest number of effective tillers hill-1 (16.87), panicle length (25.13 cm), number of grains panicle-1 (105.70) and grain yield (3.13 t ha-1). The lowest number of effective tillers hill-1 (8.13), lowest panicle length (17.47 cm) with minimum numbers of filled grains 47.67) and grain yield (1.12 t ha-1) were produced by the interaction of control (N1=O, kg N ha-1) and Kali Hitta. So, cultivation of transplant Aus rice (Gota IRRI) appeared to be the best performance with USG @ 52 kg N ha-1 and recommended to the end users.


2014 ◽  
Vol 11 (1) ◽  
pp. 81-89 ◽  
Author(s):  
FU Rasool ◽  
B Hassan ◽  
A Jahangir

A field experiment was conducted at the Research farm, Division of Agronomy, Sher-e-Kashmir University of Agricultural Sciences and Technology, India for two consecutive rainy (kharif) seasons of 2009 and 2010 to find out the impact of nitrogen, sulphur and farmyard manure (FYM) on growth and yield of sunflower (Helianthus annuus L.). Application of 120 kg N ha-1 significantly increased all the yield components viz., plant height, leaf area index, dry matter production, capitulum diameter, achenes capitulum-1 and 1000-seed weight. Pooled yield increased by 26% with 120 kg N but it was statistically at par with 80 kg N ha-1. With increased N dose, the oil content consistently decreased but the oil yield improved during both years. Sulphur application at the rate of 60 kg ha-1 significantly increased plant height, leaf area index and dry matter production after 25 days of sowing (DAS). All yield contributing characters viz., filled achenes capitulum-1, head diameter and 1000-seed weights were higher with 60 kg S ha-1 over 30 kg S ha-1. Seed and stalk yield with 60 kg S ha-1 were significantly higher than those of 30 kg S ha-1. Similarly, oil content and oil yield with 60kg Sha-1 was 2 and 10.5 % over 30 kg S ha-1. Application of FYM at the rate of 10 and 20 t ha-1 was at par with each other but recorded significant improvement in the plant height, leaf area index and dry matter production of sunflower after 25 days of sowing over no FYM. FYM @10 and 20 t ha-1 increased the oil yield by 11 and 5.4 %, respectively over no application. DOI: http://dx.doi.org/10.3329/sja.v11i1.18386 SAARC J. Agri., 11(1): 81-89 (2013)


Scientifica ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Shamim Gul ◽  
M. H. Khan ◽  
B. A. Khanday ◽  
Sabeena Nabi

To investigate the response of rainfed maize to sowing methods and NPK levels, an experiment was undertaken during kharif of 2011 and 2012 at Dryland (Kerawa) Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Budgam. The experiment was laid out in a randomized block design with combination of 2 sowing methods (flat sowing, 75 cm apart rows, and ridge sowing, 75 cm apart ridges) and 3 fertility levels (60 : 40 : 20, 75 : 50 : 30, and 90 : 60 : 40 N : P2O5 : K2O kg ha−1) with three replications. Various growth characters, namely, plant height, leaf area index, dry matter accumulation, number of days to different phenological stages, and yield, and yield contributing characters namely, cob length, number of grains cob−1, cob diameter (cm), and 100-seed weight (g), were significantly higher with S2over S1during both the years of experimentation. Fertilizer levels F3(90 : 60 : 40) and F2(75 : 50 : 30) at par with one another produced significant increase in growth and yield characters, namely, plant height, leaf area index, dry matter production at different growth stages, cob length, number of cobs plant−1, number of grains cob−1, and 100-seed weight over F1(60 : 40 : 20). Significantly higher grain yield was recorded with fertilizer level F3(90 : 60 : 40) being at par with F2(75 : 50 : 30) and showed significant increase over F1(60 : 40 : 20) with superiority of 5.4 and 5.7 per cent during 2011 and 2012, respectively. The findings of the study concluded that ridge method of sowing of maize with NPK levels of 75 : 50 : 30 kg ha−1showed better performance of crop in terms of growth, yield, and yield attributes.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Abubaker H. M. Adam ◽  
Abdalla Adam ◽  
Faiza M.A Magid

Today; there is an increasing demand for fertilizers due to the intensive and extensive agricultural activity to meet the ever increasing demand for food and fiber by the rapid world population expansion. This study is mainly concern with the Bat Guano which is usually collected from the Caves. This experiment was conducted at the Farm of the College of Agriculture, University of Bahri, Alkadaro, Khartoum North-Sudan during the period from July to November, 2017 with the objective to investigate the efficacy of Bat Guano and Nitrogen fertilizer on growth and yield of Serena and Opera (Helianthusannus, L.) Hybrid Sunflower cultivars. The study was based on split-plot experiment in randomized complete block design (RCBD) with four (4) replications. Data pertaining Plant Height (cm), Leaf Number (LN), Leaf Area (LA), Leaf Area Index (LAI) and Seed Weight (SW) were studied. The said data were analyzed using Statistic 8- software. The results reflected significant increase in plant height (F= 6.05, P < 0.0001, leaf number (F=2.37, P<0.0388), leaf area (F= 7.44, P<0.001), leaf area index (F= 6.53, P < 0.0001) and seed weight of both Sunflower cultivars respectively due to application of Guano and Nitrogen fertilizer compared to the control. It also reflected non-significant difference between all studied traits as application of either Guano or Nitrogen fertilizer. Moreover, all studied characters of the two cultivars have similarly responded to the application of the two types of fertilizers. Further studies are recommended to assess the benefits from the use of Bat Guano as a fertilizer.


Author(s):  
I. Audu ◽  
R. Idris

A field experiment to study the growth and yield stability of maize varieties (Zea mays L.) to different rates of nitrogen fertilizer and cow dung in Mubi Adamawa State, Nigeria was conducted in 2014 and 2015 cropping seasons at the Food and Agricultural Organization/Tree crops Plantation (FAO/TCP) Farm of Faculty of Agriculture, Adamawa State University Mubi. Two maize varieties; viz. Quality Protein Maize (QPM) and Extra Early White (EEW) were selected for sowing. They were assigned to the main plots and nitrogen with cow dung assigned to the subplots in a factorial combination with nitrogen at the rates of 0, 60 and 120 kg N ha-1 and cow dung at 0, 1- and 2-ton ha-1 in split plot design. Data were collected on plant height, leaf area per plant, leaf area index and grain yield per hectare. Data collected were subjected to analysis of variance and treatment means were separated using Duncan Multiple Range Test. The result showed that EEW had the highest plant height (190.77 cm), higher leaf area per plant (535.6 cm2) and leaf area index (0.40 cm) than QPM. The effect of nitrogen fertilizer on the growth and yield parameters increased as the nitrogen fertilizer was increased. 120kg N ha-1 gave the highest plant height (195.68 cm) and grain yield (5658.3 kg). The control plot produced the least; 164.77 cm (plant height) and 2662.50 kg ha-1 (grain yield). Application of 1ton ha-1 cow dung exhibited the highest plant height, (95.00 cm), leaf area per plant (518.91 cm2) and leaf area index (0.37 cm). There was an interaction of variety with nitrogen on plant height and grain yield. High interaction of variety with cow dung on plant height and leaf area per plant was recorded. There was an interaction of nitrogen with cow dung on plant height, leaf area per plant and leaf area index. However, there was an interaction of variety with nitrogen and cow dung on plant height, leaf area per plant and leaf area index. Application of 120 kg N ha-1 significantly increased the yield of QPM maize along with 2-ton ha-1 of cow dung.


Sign in / Sign up

Export Citation Format

Share Document