Design of State-feedback Path Following Control Law Considering Width of Road

2021 ◽  
Vol 57 (8) ◽  
pp. 349-357
Author(s):  
Nobuhito SUMITOMO ◽  
Hiroshi OKAJIMA ◽  
Nobutomo MATSUNAGA
2021 ◽  
Vol 224 ◽  
pp. 108660
Author(s):  
Jun Nie ◽  
Haixia Wang ◽  
Xiao Lu ◽  
Xiaogong Lin ◽  
Chunyang Sheng ◽  
...  

2014 ◽  
Vol 1006-1007 ◽  
pp. 599-603
Author(s):  
Xing Ji ◽  
Lei Zhang ◽  
Jian Cao ◽  
Shan Ma

A novel path-following control method of under-actuated AUV is proposed in this paper. Under the Serret-Frenet coordinate system, dynamics equations of path-following error were established based on virtual target AUV. And then combined with dynamics equations of AUV, controller was designed based on Lyapunov stability theory and backstepping technique. Simulation results showed that path-following error could converge to zero rapidly by using the proposed non-linear feedback control law, to make the AUV navigate along the referenced path.


2021 ◽  
Author(s):  
Mingzhen Lin ◽  
Zhiqiang Zhang ◽  
Yandong Pang ◽  
Hongsheng Lin ◽  
Qing Ji

Abstract The path following control under disturbance was studied for an underactuated unmanned surface vehicle (USV) subject to the rudder angle and velocity constraints. For this reason, a variable look-ahead integral line-of-sight (LOS) guidance law was designed on the basis of the disturbance estimation and compensation, and a cascade path following control system was created following the heading control law based on the model prediction. Firstly, the guidance law was designed using the USV three-degree-of-freedom (DOF) motion model and the LOS method, while the tracking error state was introduced to design the real-time estimation of disturbance observer and compensate for the influence of ocean current. Moreover, the stability of the system was analyzed. Secondly, sufficient attention was paid to the rudder angle and velocity constraints and the influence of system delay and other factors in the process of path following when the heading control law was designed with the USV motion response model and the model predictive control (MPC). The moving horizon optimization strategy was adopted to achieve better dynamic performance, effectively overcome the influence of model and environmental uncertainties, and further prove the stability of the control law. Thirdly, a simulation experiment was carried out to verify the effectiveness and advancement of the proposed algorithm. Fourthly, the “Sturgeon 03” USV was used in the lake test of the proposed control algorithm to prove its feasibility in the engineering practices.


2021 ◽  
Vol 33 (6) ◽  
pp. 1265-1273
Author(s):  
Ryosuke Iinuma ◽  
Yusuke Hori ◽  
Hiroyuki Onoyama ◽  
Yukihiro Kubo ◽  
Takanori Fukao ◽  
...  

We propose a robotic forklift system for stacking multiple mesh pallets. The stacking of mesh pallets is an essential task for the shipping and storage of loads. However, stacking, the placement of pallet feet on pallet edges, is a complex problem owing to the small sizes of the feet and edges, leading to a complexity in the detection and the need for high accuracy in adjusting the pallets. To detect the pallets accurately, we utilize multiple RGB-D (RGB Depth) cameras that produce dense depth data under the limitations of the sensor position. However, the depth data contain noise. Hence, we implement a region growing-based algorithm to extract the pallet feet and edges without removing them. In addition, we design the control law based on path following control for the forklift to adjust the position and orientation of two pallets. To evaluate the performance of the proposed system, we conducted an experiment assuming a real task. The experimental results demonstrated that the proposed system can achieve a stacking operation with a real forklift and mesh pallets.


Sign in / Sign up

Export Citation Format

Share Document