scholarly journals Model Experiment about Effectiveness of Displacement Type Fender System against Ship Collision to Marine Structure put in Coastal Waterway

1974 ◽  
Vol 51 (0) ◽  
pp. 47-52
Author(s):  
Akira IWAI
2021 ◽  
pp. 142-148
Author(s):  
А.М. Резцова ◽  
П.Н. Звягин

Модельный эксперимент в ледовом бассейне позволяет выяснить ледовые качества проектируемого ледостойкого морского сооружения, в том числе – получить представление о возможных ледовых нагрузках путем измерений глобальных нагрузок многокомпонентным динамометром. Чувствительность применяемого оборудования приводит к появлению шумовых помех в измеренном сигнале, вызванных действиями людей, обслуживающих эксперимент, работой машин и механизмов, гидродинамическими эффектами, а также явлениями в электросети. Отделение шумовых помех от полезного сигнала на этапе обработки данных является важной задачей, успешное решение которой позволит повысить достоверность результатов испытаний в ледовом бассейне. В настоящей работе изложен подход к очистке от шума результатов измерений многокомпонентного динамометра, применяемого в ледовом бассейне Крыловского государственного научного центра (Санкт-Петербург), с использованием амплитудно-частотного анализа участков пробега модели по чистой воде в пределах технологического окна во льду. Предложенный метод показал свою эффективность, в особенности – для экспериментов с моделью больших размеров. A model experiment in an ice tank allows to examine ice qualities of a designed ice-resistant marine structure, namely possible ice loads by measuring global loads with a multicomponent dynamometer. The sensitivity of the equipment leads to the noise interference in the measured signal caused by people's actions carrying out the experiment, by the operation of machines and mechanisms, hydrodynamic effects, as well as the phenomenae in the electrical power grid. It is important to separate noise interference from the relevant signal at the data processing stage, which will increase the reliability of ice tank experiments. This paper describes a method for denoising measurement results of a multicomponent dynamometer used in the ice tank of the Krylov State Scientific Center (St. Petersburg); the approach implies an amplitude-frequency analysis of model run areas in ice-free water within the technological window in the ice. The proposed method has demonstrated its effectiveness, especially for experiments with large models.


1978 ◽  
Vol 39 (01) ◽  
pp. 201-209 ◽  
Author(s):  
Hiroshi Hasegawa ◽  
Hiroshi Nagata ◽  
Makoto Murao

SummaryAttempts were made to demonstrate ultrastructural changes of the tissue thromboplastin after intravenous injection, as a model experiment on the pulmonary microthrombi formation induced by the tissue thromboplastin circulating from venous return.Concentrically arranged membrane structures of the injected thromboplastin disappeared in extremely short time after the injection of the thromboplastin in rabbits. The long sheet membrane of the injected thromboplastin was frequently seen as adhered to the vascular endothelium or to the surface of blood corpuscles. Furthermore, fibrin fibres were formed in contact with the long sheet membrane of the thromboplastin. Membrane structures were not found anywhere in the control rabbits.


Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.


Author(s):  
V.V. Zinchenko ◽  
◽  
E.S Fedorenko ◽  
A.V Gorovtsov ◽  
T.M Minkina ◽  
...  

As a result of the model experiment, an increase in the enzymatic activity of meadow chernozem of the impact zone of Ataman Lake with the introduction of a strains mixture of metal-resistant microorganisms into the soil was established. The experiment has shown that the application of bacterial strains increases the dehydrogenase activity of contaminated soil by 51.8% compared to the variant without remediation


1968 ◽  
Vol 1968 (124) ◽  
pp. 125-139
Author(s):  
Koichi Yokoo ◽  
Tatsuo Ito ◽  
Ryo Tasaki ◽  
Hajime Takahashi ◽  
Hiraku Tanaka

Author(s):  
Chien-Chang Chou

Navigational safety is an important issue in maritime transportation. The most frequent type of maritime accident in the port and coastal waters is the ship collision. Although some ship collision models have been developed in the past, few have taken account of wind and sea current effects. However, wind and sea current are critical factors in ship maneuvering. Therefore, based on the previous collision model without wind and sea current effects, this study further develops a ship collision model with wind and sea current effects. Finally, a comparison of the results for the proposed collision model in this study and the ship maneuvering simulator is shown to illustrate the effectiveness of the proposed mathematical model in this paper, followed by the conclusions and suggestions given to navigators, port managers, and governmental maritime departments to improve navigational safety in port and coastal waters.


Sign in / Sign up

Export Citation Format

Share Document