scholarly journals SHEETFLOW SEDIMENT TRANSPORT UNDER ASYMMETRIC WAVES AND STRONG CURRENTS

2011 ◽  
Vol 1 (32) ◽  
pp. 17
Author(s):  
Le Phuong Dong ◽  
Shinji Sato

Experiments have been conducted to investigate the sheetflow sediment transport of uniform sand under asymmetric oscillatory flows in combination with relatively strong opposite currents. Two kinds of nearshore waves were performed, namely, velocity asymmetric waves and acceleration asymmetric waves. Image analysis technique is utilized to study major influences of wave shapes and current through observing the instantaneous sheetflow layer thickness. Maximum sheetflow layer thickness was formulated and incorporated to an enhanced Watanabe and Sato’s formulation. The new conceptual model is examined its validity for a wide range of experimental conditions

2012 ◽  
Vol 1 (33) ◽  
pp. 50 ◽  
Author(s):  
Le Phuong Dong ◽  
Shinji Sato

Prototype scale laboratory experiments have been conducted to investigate the sheetflow sediment transport of uniform sands under different skewed-asymmetric oscillatory flows. Experimental results reveal that in most of the case with fine sand, the “cancelling effect”, which balances the on-/off-shore net transport under pure asymmetric/skewed flows and results a moderate net transport, was developed for combined skewed-asymmetric flow. However, under some certain conditions (T > 5s) with coarse sands, the onshore sediment transport was enhanced by 50% under combined skewed-asymmetric flows. Sand transport mechanism under oscillatory sheetflow conditions is also studied by comparing the maximum bed shear stress and the phase lag parameter at each half cycle. A comparison of measurements including the new experimental data with a number of practical sand transport formulations shows that the Dong et al. (2013) formulation performs the best in predicting the measured net transport rates over a wide range of experimental conditions


Sign in / Sign up

Export Citation Format

Share Document