nearshore waves
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Cong Mai Van ◽  
Anh Ngo ◽  
Tri Mai ◽  
H. T. Dao

Climate change has induced sea-level rise and a high intensity of storms, which create high nearshore waves. These caused severe mangrove degradation and erosion along the coastal wetland areas in the Mekong Delta in Vietnam. Mangroves in the coastal wetland foreshore can withstand only some certain design storm waves and grow under several certain submerged conditions. Therefore, reducing waves and shallowing wetland elevation for recovering mangroves and protecting them in an early birth state is important. Bamboo or melaleuca fences have been used as a nature-based solution to reduce waves and currents approaching the shore for these above purposes along Vietnamese Mekong deltaic coasts. This paper investigates wave transmission through the bamboo fence system and assesses its effectiveness in protecting the mangroves. Waves were simultaneously measured at two locations for comparison: in front of and behind the fences. The result shows that the wave reduction by the fences is considerable, and sedimentation occurs rapidly in the shelter areas behind the fences, which is highly favorable for the recovery and growth of mangroves. Next, the empirical formulae have been proposed for relationships between the wave transmission coefficient of the fence and the dimensionless wave-structures parameters, such as the relative water depth, the wave steepness, and the fence freeboard. The findings create a basic technical reference for designing a naturally friendly-based solution by using bamboo and/or wooden fences in coastal protection generally and protecting mangroves specifically. The outcome of the research contributes to narrowing an existing gap in Vietnamese design guidelines for coastal wetland protection and also facilitates the use of locally available eco-friendly materials for coastal management along the Vietnamese Mekong delta coasts.


Author(s):  
David T. Walker ◽  
Kelsey Brunner

AbstractThis paper describes a variational data assimilation algorithm based on the SWAN near shore wave-spectrum model. The approach allows single-point wave spectrum observations to be used to estimate the wave field for a nearshore region under stationary conditions, assuming a spatially uniform incident wave spectrum at the offshore boundary. The assimilated data are in the form of Fourier directional coefficients, the standard output from operational wave buoys, and are used directly by incorporating the relationship between directional spectrum and the Fourier coefficients into the formulation. The algorithm was tested on data from nearshore buoys deployed off the coast of North Carolina in May 2012, and the estimated wave field is compared to both the input data and to independent observation data. The results compare favorably to the independent data with overall RMS errors of 10–20 percent for significant wave height, about half a second for mean wave period, and as much as 3–4 SWAN spectral grid cells for mean direction. Overall, the results show that the algorithm can be effectively used to estimate the offshore boundary spectrum and accurately reproduce wave conditions in the domain.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1681
Author(s):  
Claude la Hausse de Lalouvière ◽  
Vicente Gracia ◽  
Joan Pau Sierra ◽  
Jue Lin-Ye ◽  
Manuel García-León

Barrier reefs dissipate most incoming wind-generated waves and, as a consequence, regulate the morphodynamics of its inbounded shorelines. The coastal protective capacity of reefs may nevertheless be compromised by climate change effects, such as reef degradation and sea-level rise. To assess the magnitude of these climate change effects, an analysis of the waves propagating across the barrier reef is carried out in Flic-en-Flac beach, Mauritius, based on scenarios of future sea levels and predicted coral reef condition. In the study, both the mean wave climate and extreme event conditions are considered. The results show that lower coral structure complexity jointly with higher water levels allow for higher waves to pass over the reef and, therefore, to reach the shoreline. In addition, modeling for cyclonic conditions showed that nearshore waves would also increase in height, which could lead to major coastal morphodynamic changes. Measures aimed at preserving the coral reef may allow the system to accommodate for the gradual climatic changes forecasted while keeping its coastal protective function.


2020 ◽  
Author(s):  
James Herterich ◽  
Francesco Fedele ◽  
Aziz Tayfun ◽  
Frederic Dias

<p>We present a statistical analysis of nearshore waves observed during two major north-east Atlantic storms in 2015 and 2017. Surface elevations were measured with a 5-beam acoustic Doppler current profiler (ADCP) at relatively shallow waters off the west coast of Ireland. To compensate for the significant variability of both sea states in time, we consider a novel approach for analyzing the non-stationary surface-elevation series and compare the distributions of crest and wave heights observed with theoretical predictions based on the Forristall, Tayfun and Boccotti models. In particular, the latter two models have been largely applied to and validated for deep-water waves. We show here that they also describe well the characteristics of waves observed in relatively shallow waters. The largest nearshore waves observed during the two storms do not exceed the rogue thresholds as the Draupner, Andrea, Killard or El Faro rogue waves do in intermediate or deep-water depths. Wave breaking limits wave growth and impedes the occurrence of rogue waves. Nevertheless, our analysis reveals that modulational instabilities are ineffective, third-order resonances negligible and the largest waves observed here have characteristics quite similar to those displayed by rogue waves for which second order bound nonlinearities are the principal factor that enhances the linear dispersive focusing of extreme waves.</p><p>Fedele, F., Herterich, J., Tayfun, A., & Dias, F. (2019). Large nearshore storm waves off the Irish coast. <em>Scientific reports</em>, <em>9</em>(1), 1-19.</p>


2019 ◽  
Vol 7 (11) ◽  
pp. 413 ◽  
Author(s):  
Yusuke Yamanaka ◽  
Yoshinao Matsuba ◽  
Yoshimitsu Tajima ◽  
Ryotaro Shibata ◽  
Naohiro Hattori ◽  
...  

In this study, field surveys along the coasts of Wakayama Prefecture, Japan, were first conducted to investigate the coastal damage due to storm surges and storm-induced waves caused by the 2018 Typhoons Jebi and Trami. Special focus was placed on the characteristic behavior of nearshore waves through investigation of observed data, numerical simulations, and image analysis of video footage recorded on the coasts. The survey results indicated that inundation, wave overtopping, and drift debris caused by violent storm-induced waves were the dominant factors causing coastal damage. Results of numerical simulations showed that heights of storm-induced waves were predominantly greater than storm surge heights along the entire coast of Wakayama in both typhoons. However, computed gradual alongshore variations in wave and surge heights did not explain locally-concentrated inundation and run-up heights observed along the coasts. These results indicate that complex nearshore hydrodynamics induced by local nearshore bathymetry might have played a significant role in inducing such local wave characteristics and the associated coastal damage. Analysis of video footage recorded during Typhoon Jebi, for example, clearly showed evidence of amplified infragravity wave components, which could enhance inundation and wave run-up.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Francesco Fedele ◽  
James Herterich ◽  
Aziz Tayfun ◽  
Frederic Dias

Abstract We present a statistical analysis of nearshore waves observed during two major North–East Atlantic storms in 2015 and 2017. Surface elevations were measured with a 5-beam acoustic Doppler current profiler (ADCP) at relatively shallow waters off the west coast of Ireland. To compensate for the significant variability of both sea states in time, we consider a novel approach for analyzing the non-stationary surface-elevation series and compare the distributions of crest and wave heights observed with theoretical predictions based on the Forristall, Tayfun and Boccotti models. In particular, the latter two models have been largely applied to and validated for deep-water waves. We show here that they also describe well the characteristics of waves observed in relatively shallow waters. The largest nearshore waves observed during the two storms do not exceed the rogue thresholds as the Draupner, Andrea, Killard or El Faro rogue waves do in intermediate or deep-water depths. Nevertheless, our analysis reveals that modulational instabilities are ineffective, third-order resonances negligible and the largest waves observed here have characteristics quite similar to those displayed by rogue waves for which second order bound nonlinearities are the principal factor that enhances the linear dispersive focusing of extreme waves.


Author(s):  
J. Swain ◽  
P. A. Umesh ◽  
Prasad Kumar Bhaskaran ◽  
A. N. Balchand

Sign in / Sign up

Export Citation Format

Share Document