scholarly journals LONG TERM EVOLUTION OF BALTIC SEA SANDY BEACH FORCED BY WINTER NORTH ATLANTIC OSCILLATION (NAOWI)

2012 ◽  
Vol 1 (33) ◽  
pp. 70
Author(s):  
Rozynski Grzegorz ◽  
Piotr Szmytkiewicz

The study examines a hypothesis on the coupling between Winter North Atlantic Oscillation (NAOWI) and hydro- and morphodynamics of a sandy beach with multiple bars, situated at a Baltic Sea coastal segment in northern Poland. Identification of coincident long-term periodic patterns of shoreline variability and NAOWI is a strong argument for the existence of such a coupling, because the Baltic Sea is purely non-tidal and shoreline evolution is driven entirely by waves. Interestingly, similar periodic patterns were also found in the reconstructed long-term winter wave climate (hourly retrieved significant wave height between 1958 – 2001). Therefore, the hypothesis received a strong and comprehensive statistical footing. It highlights the fact that long-term periodic changes in winter energy fluxes from air through waves to the beach remain imprinted in shoreline evolution. Hence, any climate change driven modifications of global meteorological patterns, such as NAOWI, may have vital implications for Baltic Sea beaches in coming decades.

2021 ◽  
Author(s):  
Fatemeh Najafzadeh ◽  
Nadezhda Kudryavtseva ◽  
Tarmo Soomere

Abstract Wave heights in the Baltic Sea in 1992–2015 have predominantly increased in the sea's western parts. The linear trends in the winter wave heights exhibit a prominent meridional pattern. Using the technique of Empirical Orthogonal Functions (EOF) applied to the multi-mission satellite altimetry data, we link a large part of this increase in the wave heights with the climatic indices of the Scandinavian mode, North Atlantic Oscillation, and Arctic Oscillation. The winter trends show a statistically significant negative correlation (correlation coefficient –0.47±0.19) with the Scandinavian pattern and a positive correlation with the North Atlantic Oscillation (0.31±0.22) and Arctic Oscillation (0.42±0.20). The meridional pattern is associated with more predominant north-westerly and westerly winds driven by the Scandinavian and North Atlantic Oscillation, respectively. All three climatic indices show a statistically significant time-variable correlation with Baltic Sea wave climate during the winter season. When the Scandinavian pattern's influence is strong, North Atlantic and Arctic Oscillations' effect is low and vice versa. The results are backed up by simulations using synthetic data that demonstrate that the percentage of variance retrieved using EOF analysis from the satellite-derived wave measurements is directly related to the percentage of noise in the data and the retrieved spatial patterns are insensitive to the level of noise.


Ocean Science ◽  
2012 ◽  
Vol 8 (2) ◽  
pp. 287-300 ◽  
Author(s):  
T. Soomere ◽  
R. Weisse ◽  
A. Behrens

Abstract. The basic features of the wave climate in the Southwestern Baltic Sea (such as the average and typical wave conditions, frequency of occurrence of different wave parameters, variations in wave heights from weekly to decadal scales) are established based on waverider measurements at the Darss Sill in 1991–2010. The measured climate is compared with two numerical simulations with the WAM wave model driven by downscaled reanalysis of wind fields for 1958–2002 and by adjusted geostrophic winds for 1970–2007. The wave climate in this region is typical for semi-enclosed basins of the Baltic Sea. The maximum wave heights are about half of those in the Baltic Proper. The maximum recorded significant wave height HS =4.46 m occurred on 3 November 1995. The wave height exhibits no long-term trend but reveals modest interannual (about 12 % of the long-term mean of 0.76 m) and substantial seasonal variation. The wave periods are mostly concentrated in a narrow range of 2.6–4 s. Their distribution is almost constant over decades. The role of remote swell is very small.


2011 ◽  
Vol 1 (32) ◽  
pp. 1
Author(s):  
Grzegorz Marcin Rozynski ◽  
Zbigniew Pruszak

Long-term growth of storminess of the Baltic Sea near Poland has been identified for autumn and winter months, particularly for January. This growth is concurrent with the increase of westerly waves in Jan., Feb. and Oct. A vivid relationship between the North Atlantic Oscillation and significant wave height Hs in Jan. suggests it can be a potential driver of storminess growth in that month. For Feb. this relationship is unstable; other months demonstrate no connection toward the NAO. The wave climate in January also exhibits a strong 8-year cycle, very likely to drive 8-year variations of shoreline position, detected previously at a study site. The influence of NAO may manifest an unfavorable regime change in which mightier winter storms will be mostly occurring above freezing in the absence of ice cover. Without that cover vulnerable sandy beaches will be exposed to accelerated erosion from direct and stronger wave attack.


2011 ◽  
Vol 8 (6) ◽  
pp. 2237-2270 ◽  
Author(s):  
T. Soomere ◽  
R. Weisse ◽  
A. Behrens

Abstract. The basic features of the wave climate in the South-Eastern Baltic Sea are studied based on available long-term measurements and simulations. The analysis of average, typical and extreme wave conditions, frequency of occurrence of different wave parameters, variations in wave heights from weekly to decadal scales, etc., is performed based on waverider measurements at the Darss Sill since 1991. The measured climatology is compared against numerical simulations with the WAM wave model driven by downscaled reanalysis of wind fields for 1958–2002 and by adjusted geostrophic winds for 1970–2007. The wave climate in this region is typical for semi-enclosed basins of the Baltic Sea. The maximum wave heights are about half of those in the Baltic Proper. The overall reliably recorded maximum significant wave height HS =4.46 m occurred during a severe S-SW storm in 1993 when the 10-min average wind speed reached 28 m s−1. The long-term average significant wave height (0.75 m) shows modest interannual (about 12 % of the long-term mean) and substantial seasonal variation. The wave periods are mostly concentrated in a narrow range of 2.5–4 s and their distribution is almost constant over decades. The role of remote swell is very small. The annual wave properties show large interannual variability but no long-term trends in average and extreme wave heights can be observed.


2010 ◽  
Vol 23 (6) ◽  
pp. 1291-1307 ◽  
Author(s):  
Tim Woollings ◽  
Abdel Hannachi ◽  
Brian Hoskins ◽  
Andrew Turner

Abstract The distribution of the daily wintertime North Atlantic Oscillation (NAO) index in the 40-yr ECMWF Re-Analysis (ERA-40) is significantly negatively skewed. Dynamical and statistical analyses both suggest that this skewness reflects the presence of two distinct regimes—referred to as “Greenland blocking” and “subpolar jet.” Changes in both the relative occurrence and in the structure of the regimes are shown to contribute to the long-term NAO trend over the ERA-40 period. This is contrasted with the simulation of the NAO in 100-yr control and doubled CO2 integrations of the third climate configuration of the Met Office Unified Model (HadCM3). The model has clear deficiencies in its simulation of the NAO in the control run, so its predictions of future behavior must be treated with caution. However, the subpolar jet regime does become more dominant under anthropogenic forcing and, while this change is small it is clearly statistically significant and does represent a real change in the nature of NAO variability in the model.


1991 ◽  
Vol 24 (3-4) ◽  
pp. 373-383 ◽  
Author(s):  
A. Grimvall ◽  
H. Borén ◽  
S. Jonsson ◽  
S. Karlsson ◽  
R. Sävenhed

The long-term fate of chlorophenols and adsorbable organic halogens (AOX) was studied in two large recipients of bleach-plant effluents: Lake Vättern in Sweden and the Baltic Sea. The study showed that there is a long-distance transport (>100 km) of chloroguaiacols from bleach-plants to remote parts of receiving waters. However, there was no evidence of several-year-long accumulation of chloro-organics in the water-phase. A simple water-exchange model for Lake Vättern showed that the cumulated bleach-plant discharges from the past 35 years would have increased the AOX concentration in the lake by more than 100 µg Cl/l, if no AOX had been removed from the water by evaporation, sedimentation or degradation. However, the observed AOX concentration in Lake Vättern averaged only about 15 µg Cl/l, which was less than the average AOX concentration (32 µg Cl/l) in the “unpolluted” tributaries of the lake. Similar investigations in the Baltic Sea showed that non-point sources, including natural halogenation processes, accounted for a substantial fraction of the AOX in the open sea. The presence of 2,4,6-trichlorophenol in precipitation and “unpolluted” surface waters showed that non-point sources may also make a considerable contribution to the background levels of compounds normally regarded as indicators of bleach-plant effluents.


Sign in / Sign up

Export Citation Format

Share Document