scholarly journals IMMERSIVE EXPERIENCES IN CLIMATE ADAPTATION

Author(s):  
Juliano Calil

As coastal communities worldwide contend with sea-level rise, coastal erosion, and other impacts of climate change, a critical piece of the puzzle has become educating stakeholders in highly creative, insightful, and practical ways. In this study, we will highlight the main findings from the use of immersive and interactive Virtual Reality (VR) experiences in climate adaptation. These tools are helping coastal communities better understand potential impacts as well as explore near- and long-term solutions to reduce coastal risks. We will describe the challenges and steps taken to develop these applications at four coastal locations in the U.S. (Turner Station, MD, and Santa Cruz, Long Beach, and Moss Landing in CA); from identifying key objectives of each experience, the critical messages, and target audiences, to flying drones over coastal areas and working with photogrammetry to create hyper-realistic 3D models that are inserted in the VR experience. These immersive and interactive experiences support planning, management and monitoring activities related to sea-level rise, storms, coastal erosion, king tides, and more. These tools are being developed by a multidisciplinary team with a range of expertise including climate and coastal scientists, city planners, communications experts, filmmakers, 3D animators, and VR developers.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/aDIkbn_FO1c

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1142
Author(s):  
Juliano Calil ◽  
Geraldine Fauville ◽  
Anna Carolina Muller Queiroz ◽  
Kelly L. Leo ◽  
Alyssa G. Newton Mann ◽  
...  

As coastal communities around the globe contend with the impacts of climate change including coastal hazards such as sea level rise and more frequent coastal storms, educating stakeholders and the general public has become essential in order to adapt to and mitigate these risks. Communicating SLR and other coastal risks is not a simple task. First, SLR is a phenomenon that is abstract as it is physically distant from many people; second, the rise of the sea is a slow and temporally distant process which makes this issue psychologically distant from our everyday life. Virtual reality (VR) simulations may offer a way to overcome some of these challenges, enabling users to learn key principles related to climate change and coastal risks in an immersive, interactive, and safe learning environment. This article first presents the literature on environmental issues communication and engagement; second, it introduces VR technology evolution and expands the discussion on VR application for environmental literacy. We then provide an account of how three coastal communities have used VR experiences developed by multidisciplinary teams—including residents—to support communication and community outreach focused on SLR and discuss their implications.


2021 ◽  
Author(s):  
Malay Pramanik ◽  
Sylvia Szabo ◽  
Indrajit Pal ◽  
Parmeshwar Udmale

<p><strong>Abstract:</strong></p><p>Climate change is one of the most pressing challenges of the 21st century and is likely to increase migration of the marginal communities from the coastal areas throughout the world. It is projected that 200 million people worldwide will be climate refugees by 2050. Owing to high exposure and poor adaptive capacity, low-lying coastal areas and islands in developing countries are the most vulnerable to the impacts of climate change. Therefore, it is imperative to understand how climate change is affecting the livelihoods, in turn, driving the migration in these regions.</p><p>The present study focuses on the Sundarbans region located along the coastal belt of West Bengal (India) as a part of Ganga-Brahmaputra mega delta. It is also a home of 4.7 million poor people, who earn below US$10 per month. The region is an exceedingly flat, low-lying, alluvial plain highly exposed to sea level rise, storm surge, tornedoes, cyclonic activity, riverbank erosion, salinization and subsequent mangrove depletion. Due to the climatic hazards, the basic livelihoods are at risk and their strategies towards livelihood collection remains largely unknown. Therefore, the present study provides insights into the nexus among climate stimuli, livelihood risks, and households’ strategies in the region, with special emphasize on climate change.</p><p>The study is based on field survey of 150 respondents representing migrant and non-migrant coastal communities from Gosaba, Basanti and Hingalganj block using structured questionnaires. More than 70% of respondents stated that livelihood risks mainly from climate change impacts as the major reason for inter-state migration, which is the main source of income supporting livelihood in the region. This environmental displacement in the Sundarbans region symbolizes the failure of adaptation to mitigate climate change induced sea level rise increasing the exposure to coastal flooding and storm surges, salinization, and erosion.  This study discusses potential mitigation strategies to combat the impacts of climate change on livelihoods of the coastal communities in the region.</p>


Author(s):  
Alice F. Besterman ◽  
Rachel W. Jakuba ◽  
Wenley Ferguson ◽  
Diana Brennan ◽  
Joseph E. Costa ◽  
...  

AbstractA prominent form of salt marsh loss is interior conversion to open water, driven by sea level rise in interaction with human activity and other stressors. Persistent inundation drowns vegetation and contributes to open water conversion in salt marsh interiors. Runnels are shallow channels originally developed in Australia to control mosquitoes by draining standing water, but recently used to restore marsh vegetation in the USA. Documentation on runnel efficacy is not widely available; yet over the past 10 years dozens of coastal adaptation projects in the northeastern USA have incorporated runnels. To better understand the efficacy of runnels used for restoration, we organized a workshop of 70 experts and stakeholders in coastal resource management. Through the workshop we developed a collective understanding of how runnels might be used to slow or reverse open water conversion, and identified unresolved questions. In this paper we present a synthesis of workshop discussions and results from a promising case study in which vegetation was restored at a degraded marsh within a few years of runnel construction. Despite case study outcomes, key questions remain on long-term runnel efficacy in marshes differing in elevation, tidal range, and management history. Runnel construction is unlikely to improve long-term marsh resilience alone, as it cannot address underlying causes of open water conversion. As a part of holistic climate planning that includes other management interventions, runnels may “buy time” for salt marshes to respond to management action, or adapt to sea level rise.


2021 ◽  
Author(s):  
Mitchell Harley ◽  
Gerd Masselink ◽  
Amaia Ruiz de Alegría-Arzaburu ◽  
Nieves Valiente ◽  
Tim Scott

Abstract Extreme storms cause extensive beach-dune erosion and are universally considered to enhance coastal erosion due to sea-level rise (SLR). However, extreme storms can also have a positive contribution to the nearshore sediment budget by exchanging sediment between the lower and upper shoreface and/or between adjacent headlands, potentially mitigating adverse SLR impacts. Here we use three high-resolution morphological datasets of extreme storm-recovery sequences from Australia, the UK and Mexico to quantify the nearshore sediment budget and relate these episodic volume changes to long-term coastal forecasts. We show that sediment gains over the upper shoreface and beach were very significant (58-140 m3/m) and sufficient to offset decades of predicted shoreline retreat due to SLR, even for an upper SSP5-8.5 scenario. It is evident that increased confidence in shoreline predictions due to SLR relies fundamentally on robust quantitative understanding of the sediment budget, in particular any long-term contribution of sediment transport from outside the nearshore region.


2017 ◽  
Vol 4 (1) ◽  
pp. 15-22
Author(s):  
Caleb Mensah Amos T. Kabo-bah Eric Mortey

The sea level is rising due to global warming in response, by and large, to anthropogenic activities. Coastal communities along the Gulf of Guinea are low lying which makes them more vulnerable to rising sea level. Due to the topography of the Gulf of Guinea, the coastal belt is a highly erosive sandy barrier system that is susceptible to flooding. In West Africa, highlyproductive ecosystem like mangroves, estuaries, and deltas, that form the vital socio-economic activities like trade, tourism, fisheries and industrial growth due to the oil and gas development are found in these coastal communities. Therefore, majority of the population in West Africa who live in these mega cities along the coast face possible threats. Thus, climate adaptation is the only option to address these future threats as reduction in the emission of carbon dioxide (CO2) and other green house gases is not enough for now to prevent global warming which leads to sea level rise. Thus, this study seeks to investigate from other research works, how sea level rise has affected these coastal communities along the Gulf of Guinea and how the communities are adapting to these challenges to new ways of living. It concludes with a recommendation on a climate change based framework.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lucy Chisholm ◽  
Tracey Talbot ◽  
William Appleby ◽  
Benita Tam ◽  
Robin Rong

A scientific scenario paper was prepared ahead of the Gulf of Maine (GOM) 2050 International Symposium to review and summarize possible weather-related and sea-level changes within the GOM as a result of climate change. It is projected that the GOM will experience warming temperatures, continued sea-level rise, and changes to storm characteristics and related elements such as precipitation and waves in the intermediate term, by approximately 2050. Coastal communities within the GOM region are particularly vulnerable to the anticipated impacts of climate change. This article aims to provide context on some of the consequential impacts that may occur from the changes projected within the area.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1324
Author(s):  
David Revell ◽  
Phil King ◽  
Jeff Giliam ◽  
Juliano Calil ◽  
Sarah Jenkins ◽  
...  

Sea level rise increases community risks from erosion, wave flooding, and tides. Current management typically protects existing development and infrastructure with coastal armoring. These practices ignore long-term impacts to public trust coastal recreation and natural ecosystems. This adaptation framework models physical responses to the public beach and private upland for each adaptation strategy over time, linking physical changes in widths to damages, economic costs, and benefits from beach recreation and nature using low-lying Imperial Beach, California, as a case study. Available coastal hazard models identified community vulnerabilities, and local risk communication engagement prioritized five adaptation approaches—armoring, nourishment, living shorelines, groins, and managed retreat. This framework innovates using replacement cost as a proxy for ecosystem services normally not valued and examines a managed retreat policy approach using a public buyout and rent-back option. Specific methods and economic values used in the analysis need more research and innovation, but the framework provides a scalable methodology to guide coastal adaptation planning everywhere. Case study results suggest that coastal armoring provides the least public benefits over time. Living shoreline approaches show greater public benefits, while managed retreat, implemented sooner, provides the best long-term adaptation strategy to protect community identity and public trust resources.


Author(s):  
Gillian Gundersen ◽  
D. Reide Corbett ◽  
Austyn Long ◽  
Melinda Martinez ◽  
Marcelo Ardón

2013 ◽  
Vol 19 (5) ◽  
pp. 551-568 ◽  
Author(s):  
Brenda B. Lin ◽  
Yong Bing Khoo ◽  
Matthew Inman ◽  
Chi-Hsiang Wang ◽  
Sorada Tapsuwan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document