scholarly journals ADVANCES IN THE UNSTRUCTURED WAVEWATCH III AND APPLICATION TO HURRICANE DORIAN

Author(s):  
Jane McKee Smith ◽  
Tyler Hesser ◽  
Mary Anderson Bryant ◽  
Aron Roland ◽  
Andrew Cox

The spectral wave generation and propagation model WAVEWATCH III (WW3) is undergoing rapid development to extend capability and applicability. An option for unstructured grids and implicit solution provides WW3 with the flexibility and efficiency to resolve complex shorelines and high-gradient wave zones to drive nearshore circulation, wave setup, and wave-driven sediment transport with multi-scale spatial coverage over approximately three orders of magnitude. The model is compatible with community-based coupling infrastructure to facilitate two-way coupling with circulation models for simulating hurricane storm surge and waves. Unstructured WW3 is applied for 2019 Hurricane Dorian and validated with National Data Buoy Center buoys and nearshore gauges at the US Army Corps of Engineers Field Research Facility.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/kz9G46xUD0k

1964 ◽  
Vol 1 (4) ◽  
pp. 215-226 ◽  
Author(s):  
W G Brown

Calculations using the Neumann solution (as modified by Aldrich) and thermal properties of soils (obtained by Kersten) show that the frost penetration depth for the same freezing index for essentially all soils with any moisture content and for dry sand and rock varies by a factor of about 2 to 1. The extremes calculated in this way bracket the experimentally determined design curve of the US Army Corps of Engineers and give it theoretical support. The theoretical calculations and additional experimental data are used as a basis for a small alteration in the slope of the design curve. This modified design curve is recommended for field use because of (1) inherent imperfections in existing theory and (2) practical limitations to precise specification of field conditions.


Author(s):  
Jane McKee Smith ◽  
Spicer Bak ◽  
Tyler Hesser ◽  
Mary A. Bryant ◽  
Chris Massey

An automated Coastal Model Test Bed has been built for the US Army Corps of Engineers Field Research Facility to evaluate coastal numerical models. In October of 2015, the test bed was expanded during a multi-investigator experiment, called BathyDuck, to evaluate two bathymetry sources: traditional survey data and bathymetry generated through the cBathy inversion algorithm using Argus video measurements. Comparisons were made between simulations using the spectral wave model STWAVE with half-hourly cBathy bathymetry and the more temporally sparse surveyed bathymetry. The simulation results using cBathy bathymetry were relatively close to those using the surveyed bathymetry. The largest differences were at the shallowest gauges within 250 m of the coast, where wave model normalized root-mean-square was approximately twice are large using the cBathy bathymetry. The nearshore errors using the cBathy input were greatest during events with wave height greater than 2 m. For this limited application, the Argus cBathy algorithm proved to be a suitable bathymetry input for nearshore wave modeling. cBathy bathymetry was easily incorporated into the modeling test bed and had the advantage of being updated on approximately the same temporal scale as the other model input conditions. cBathy has great potential for modeling applications where traditional surveys are sparse (seasonal or yearly).


2015 ◽  
Vol 35 (2) ◽  
pp. 196-208 ◽  
Author(s):  
Julie Dean Rosati ◽  
Katherine Flynn Touzinsky ◽  
W. Jeff Lillycrop

2017 ◽  
Vol 8 (1) ◽  
pp. 125-151 ◽  
Author(s):  
Eric M Gagnet ◽  
John M Hoemann ◽  
James S Davidson

Over recent decades, three distinct methods have evolved that are currently being used to generate resistance functions for single-degree-of-freedom analyses of unreinforced masonry walls subjected to blast loading. The degree of differences in these resistance definitions depends on whether the wall is assumed to be simply supported or whether compression arching forces result from rotation restraint at the supports. The first method originated in the late 1960s as a result of both experimental and analytical research sponsored by the US Department of Defense. That method, referred to as the Wiehle method, is the basis of Unified Facilities Criteria 3-340-02 and other derived analytical software such as the Wall Analysis Code developed by the US Army Corps of Engineers, Engineer Research and Development Center. The second method is based on elastic mechanics and an assumed linear decay function that follows and is the basis of the widely used Single-Degree-of-Freedom Blast Effects Design Spreadsheets software distributed by the US Army Corps of Engineers, Protective Design Center. The third method is largely based on concrete and masonry behavioral theories developed by Paulay and Priestly in the early 1990s. This article systematically compares the resistance methodologies for arching and non-arching scenarios, demonstrates the implications by plugging the disparate resistance functions into blast load single-degree-of-freedom models, compares the analytical results to full-scale blast test results, and offers conclusions about the accuracy and efficacies of each method.


2021 ◽  
Author(s):  
Justin Wilkins ◽  
Andrew McQueen ◽  
Joshua LeMonte ◽  
Burton Suedel

Given the reported extent of microplastics in the aquatic environment, environmentally relevant exposure information for sediments dredged by the US Army Corps of Engineers will lend context to the risks posed by this contaminant during dredging. We measured the occurrence, abundance, and polymer composition of microplastics in sediments collected from nine dredged waterways and two non-dredged reference areas. The number of particles in sediment samples ranged from 162 to 6110 particles/kg dry wt., with a mean of 1636 particles/kg dry wt. Fragments were the most prevalent shape observed among the 11 study sites (100% frequency of occurrence), followed by fibers (81%), spheres (75%), foams (38%) and films (34%). Based on analyses of chemical composition of the particles using Fourier transform infrared spectroscopy, polyethylene:propylene was the most common polymer type observed. Consistent with results presented by other investigators microplastic concentrations and polymer types in bottom sediments in this study were also aligned with the most widely used plastics worldwide.


2021 ◽  
Author(s):  
Jennifer McAlpin ◽  
Jason Lavecchia

The Brunswick area consists of many acres of estuarine and marsh environments. The US Army Corps of Engineers District, Savannah, requested that the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, develop a validated Adaptive Hydraulics model and assist in using it to perform hydrodynamic modeling of proposed navigation channel modifications. The modeling results are necessary to provide data for ship simulation. The model setup and validation are presented here.


Sign in / Sign up

Export Citation Format

Share Document