scholarly journals 3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Irregular Waves)

2018 ◽  
Vol 30 (6) ◽  
pp. 253-262 ◽  
Author(s):  
Kwang Ho Lee ◽  
Jun Hyeong Lee ◽  
Ik Han Jeong ◽  
Do Sam Kim
SINERGI ◽  
2019 ◽  
Vol 23 (1) ◽  
pp. 61
Author(s):  
Taufiq Ilham Maulana ◽  
Bagus Soebandono ◽  
Aris Susanti

Castellated steel beam is a beam with a regular section cut into half with a particular pattern and regrouped with welding to increase its height compared to the original. This structure element has been developed in building constructions since many years ago. However, its uniform section along the span will make the modification no longer effective in cantilever structure, unless it has additional adaptation. Therefore, in this study, it is proposed to use a castellated steel beam with a tapered shape to be applied as cantilever structures. A steel beam with IWF section 150x75x5x7 is the primary sample type in this research. Some variations were made such as openings angle for 450 and 500, openings space for 50 mm, 70 mm, and 90 mm, openings diameter for 50 mm, 75 mm, and 100 mm, and span length for 2 m, 2.5 m, 3 m, and 3.5 m. Two open-source software namely FreeCAD and LisaFEA were used to draw solid 3-dimensional samples and to conduct the numerical analysis to determine stress and deformation respectively. From the result, it is known that the smallest stresses and deformations can be achieved by a different angle of openings, openings space, and diameter for each span length.


The Internal combustion engine is one of the widely used mechanical system. The primary aspect of all types of engines is the amount of power produced which, is affected by the complete combustion of a mixture of air and fuel. The objective of this present work is to outline the improved performance of single-cylinder Compression Ignition engine with the aid of geometrical modifications of Inlet manifold. The Study is performed on Kirlosakr CI engine. For modeling of engine assembly, CATIA V5 Software has been used. The Numerical simulations are performed with Ansys 14.5 and solver used as CFX. In this work, two different engine models such as Conventional valve and Modified valve with plate is being considered for CFD analysis. The simulation study of air flow motion with a valve lift of 4 mm, 6 mm and 8 mm is performed for both valve configurations. This numerical analysis aims to maximize the air velocity in the inlet valve with minimum turbulence which in turn improves the engine performance. The study is performed on the single cylinder four-stroke variable compression ratio diesel engines. In the present study, the air flow motion inside the intake manifold of an engine is simulated and investigations are performed by considering the six conditions of the intake valve. The results obtained acts as a basis for further investigation of a variety of valve geometry.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Satyapal Yadav ◽  
V. P. Chandramohan

Solar dryer with thermal energy storage device is an essential topic for food drying applications in industries. In this work, a two-dimensional (2D) numerical model is developed for the application of solar drying of agricultural products in an indirect type solar dryer. The phase-change material (PCM) used in this work is paraffin wax. The study has been performed on a single set of concentric tube which consists of a finned inner copper tube for air flow and an outer plastic tube for PCM material. The practical domain is modeled using ANSYS, and computer simulations were performed using ANSYS fluent 2015. The air velocity and temperature chosen for this study are based on the observation of indirect type solar dryer experimental setup. From this numerical analysis, the temperature distribution, melting, and solidification fraction of PCM are estimated at different air flow velocities, time, and inlet temperature of air. It is concluded that the drying operation can be performed up to 10.00 p.m. as the PCM transfers heat to inlet air up to 10.00 p.m. and before it got charged up to 3.00 p.m. because of solar radiation. The maximum outlet temperature is 341.62 K (68.62 °C) which is suitable for food drying applications. Higher air flow velocity enhances quick melting of PCM during charging time and quick cooling during recharging of inlet air; therefore, higher air flow velocity is not preferred for food drying during cooling of PCM.


Author(s):  
Jang Il Lee ◽  
Ae Ju Cheong ◽  
Bok Ki Min

In this numerical study, Commercial CFD (Computational Fluid Dynamics) code, ANSYS CFX ver. 17.1, is used to analyze the 3-Dimensional flow characteristics through orifice plate (β = 0.6) with two 90 degree bends in different planes. The purpose of this numerical study is to evaluate measurement accuracy and flow characteristics of orifice flowmeter depending on upstream straight length from 12D to 56D. Thus, numerical calculations of pressure drop caused by swirling flow and distortion of axial velocity profile on orifice plate are performed by using numerical analysis. In addition, numerical analysis results are compared with recommended upstream straight length of ASME Performance Test Codes 19.5 for orifice plates and nozzles. The results show that if upstream straight length of orifice flowmeter is more than 40D, there is a little deviation of differential pressure. Moreover, it is found that up-down asymmetry of recirculation zones is relatively attenuated as the upstream straight length increases.


1999 ◽  
Vol 123 (3) ◽  
pp. 315-318 ◽  
Author(s):  
Keiji Sasao ◽  
Mitsuru Honma ◽  
Atsuo Nishihara ◽  
Takayuki Atarashi

A numerical method for simulating impinging air flow and heat transfer in plate-fin type heat sinks has been developed. In this method, all the fins of an individual heat sink and the air between them are replaced with a single, uniform element having an appropriate flow resistance and thermal conductivity. With this element, fine calculation meshes adapted to the shape of the actual heat sink are not needed, so the size of the calculation mesh is much smaller than that of conventional methods.


Sign in / Sign up

Export Citation Format

Share Document