scholarly journals Critical Assessment of River Water Quality and Wastewater Treatment Plant (WWTP)

Author(s):  
Allaa M Aenab ◽  
◽  
S. K Singh
2014 ◽  
Vol 70 (11) ◽  
pp. 1798-1807 ◽  
Author(s):  
Javier E. Holguin-Gonzalez ◽  
Pieter Boets ◽  
Gert Everaert ◽  
Ine S. Pauwels ◽  
Koen Lock ◽  
...  

Worldwide, large investments in wastewater treatment are made to improve water quality. However, the impacts of these investments on river water quality are often not quantified. To assess water quality, the European Water Framework Directive (WFD) requires an integrated approach. The aim of this study was to develop an integrated ecological modelling framework for the River Drava (Croatia) that includes physical-chemical and hydromorphological characteristics as well as the ecological river water quality status. The developed submodels and the integrated model showed accurate predictions when comparing the modelled results to the observations. Dissolved oxygen and nitrogen concentrations (ammonium and organic nitrogen) were the most important variables in determining the ecological water quality (EWQ). The result of three potential investment scenarios of the wastewater treatment infrastructure in the city of Varaždin on the EWQ of the River Drava was assessed. From this scenario-based analysis, it was concluded that upgrading the existing wastewater treatment plant with nitrogen and phosphorus removal will be insufficient to reach a good EWQ. Therefore, other point and diffuse pollution sources in the area should also be monitored and remediated to meet the European WFD standards.


2001 ◽  
Vol 43 (2) ◽  
pp. 91-99 ◽  
Author(s):  
T. Iwane ◽  
T. Urase ◽  
K. Yamamoto

Escherichia coli and coliform group bacteria resistant to seven antibiotics were investigated in the Tama River, a typical urbanized river in Tokyo, Japan, and at a wastewater treatment plant located on the river. The percentages of antibiotic resistance in the wastewater effluent were, in most cases, higher than the percentages in the river water, which were observed increasing downstream. Since the possible increase in the percentages in the river was associated with treated wastewater discharges, it was concluded that the river, which is contaminated by treated wastewater with many kinds of pollutants, is also contaminated with antibiotic resistant coliform group bacteria and E.coli. The percentages of resistant bacteria in the wastewater treatment plant were mostly observed decreasing during the treatment process. It was also demonstrated that the percentages of resistance in raw sewage are significantly higher than those in the river water and that the wastewater treatment process investigated in this study works against most of resistant bacteria in sewage.


2010 ◽  
Vol 61 (10) ◽  
pp. 2645-2652 ◽  
Author(s):  
S. Heusch ◽  
B. Kamradt ◽  
M. Ostrowski

In the federal state of Hesse in Germany the application of an integrated software modelling framework is becoming part of the planning process to attain legal approval for the operation of combined sewer systems. The software allows for parallel simulation of flow and water quality routing in the sewer system and in receiving rivers. It combines existing pollution load model approaches with a simplified version of the River Water Quality Model No. 1 (RWQM1). Comprehensive simulation of the wastewater treatment plant (WWTP) is not considered yet. The paper analyses alternatives for the implementation of a WWTP module to model activated sludge plants. For both primary and secondary clarifiers as well as for the activated sludge process concepts for the integration into the existing software framework were developed. The activated sludge concept which uses a linearized version of the well known ASM1 model is presented in detail.


Sign in / Sign up

Export Citation Format

Share Document