scholarly journals An analysis of U.S. wastewater treatment plant effluent dilution ratio: Implications for water quality and aquaculture

2020 ◽  
Vol 721 ◽  
pp. 137819 ◽  
Author(s):  
Samreen Siddiqui ◽  
Jeremy L. Conkle ◽  
John Scarpa ◽  
Alexey Sadovski
2018 ◽  
Vol 18 (5) ◽  
pp. 1841-1851 ◽  
Author(s):  
Jingshui Huang ◽  
Ruyi Xie ◽  
Hailong Yin ◽  
Qi Zhou

Abstract Water quality in urban rivers is a product of the interactions of human activities and natural processes. To explore water quality characteristics and to assess the impacts of natural and anthropogenic processes on urban river systems, we used multivariate statistical techniques to analyse water quality of a typical urban river in eastern China. Cluster analysis grouped the sites into four clusters which were affected by wastewater treatment plant effluent, untreated domestic sewage, tributaries and shipping, respectively. Cluster analysis provided scientific basis for optimizing the monitoring scheme. Three latent factors obtained from principal component analysis/factor analysis were interpreted as wastewater treatment plant effluent, untreated domestic sewage and surface runoff. Absolute principal component analysis indicated that most of the total dissolved phosphorus, nitrite, total dissolved nitrogen, and total nitrogen, Na, K and Cl resulted from the wastewater treatment plant effluent, most of the ammonia, dissolved organic carbon, sulfate and Mg resulted from the surface runoff. The pollution control measures for nitrogen and phosphorus were proposed based on the source apportionment results. The present study showed that the multivariate statistical methods are effective to identify the main pollution sources, quantify their relative contributions and provide useful water management suggesitions in urban rivers.


Author(s):  
Maria Clara V. M. Starling ◽  
Elizângela P. Costa ◽  
Felipe A. Souza ◽  
Elayne C. Machado ◽  
Juliana Calábria de Araujo ◽  
...  

AbstractThis work investigated an innovative alternative to improve municipal wastewater treatment plant effluent (MWWTP effluent) quality aiming at the removal of contaminants of emerging concern (caffeine, carbendazim, and losartan potassium), and antibiotic-resistant bacteria (ARB), as well as disinfection (E. coli). Persulfate was used as an alternative oxidant in the solar photo-Fenton process (solar/Fe/S2O82−) due to its greater stability in the presence of matrix components. The efficiency of solar/Fe/S2O82− at neutral pH using intermittent iron additions is unprecedented in the literature. At first, solar/Fe/S2O82− was performed in a solar simulator (30 W m−2) leading to more than 60% removal of CECs, and the intermittent iron addition strategy was proved effective. Then, solar/Fe/S2O82− and solar/Fe/H2O2 were compared in semi-pilot scale in a raceway pond reactor (RPR) and a cost analysis was performed. Solar/Fe/S2O82− showed higher efficiencies of removal of target CECs (55%), E. coli (3 log units), and ARB (3 to 4 log units) within 1.9 kJ L−1 of accumulated irradiation compared to solar/Fe/H2O2 (CECs, 49%; E. coli, 2 log units; ARB, 1 to 3 log units in 2.5 kJ L−1). None of the treatments generated acute toxicity upon Allivibrio fischeri. Lower total cost was obtained using S2O82− (0.6 € m−3) compared to H2O2 (1.2 € m−3). Therefore, the iron intermittent addition aligned to the use of persulfate is suitable for MWWTP effluent quality improvement at neutral pH.


Author(s):  
José Roberto Guimarães ◽  
Regiane Aparecida Guadagnini ◽  
Regina Maura Bueno Franco ◽  
Luciana Urbano dos Santos

AbstractThis study evaluated the effectiveness of H


Sign in / Sign up

Export Citation Format

Share Document