Comparative Study of Bisection, Newton-Raphson and Secant Methods of Root- Finding Problems

2014 ◽  
Vol 4 (4) ◽  
pp. 01-07 ◽  
Author(s):  
Ehiwario, J.C.,
Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1306
Author(s):  
Elsayed Badr ◽  
Sultan Almotairi ◽  
Abdallah El Ghamry

In this paper, we propose a novel blended algorithm that has the advantages of the trisection method and the false position method. Numerical results indicate that the proposed algorithm outperforms the secant, the trisection, the Newton–Raphson, the bisection and the regula falsi methods, as well as the hybrid of the last two methods proposed by Sabharwal, with regard to the number of iterations and the average running time.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1118
Author(s):  
Sabharwal

Finding the roots of an equation is a fundamental problem in various fields, including numerical computing, social and physical sciences. Numerical techniques are used when an analytic solution is not available. There is not a single algorithm that works best for every function. We designed and implemented a new algorithm that is a dynamic blend of the bisection and regula falsi algorithms. The implementation results validate that the new algorithm outperforms both bisection and regula falsi algorithms. It is also observed that the new algorithm outperforms the secant algorithm and the Newton–Raphson algorithm because the new algorithm requires fewer computational iterations and is guaranteed to find a root. The theoretical and empirical evidence shows that the average computational complexity of the new algorithm is considerably less than that of the classical algorithms.


Author(s):  
Murat Millidere ◽  
Ugur Karaman ◽  
Samet Uslu ◽  
Cosku Kasnakoglu ◽  
Tayfun Cimen

Eng ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 80-98
Author(s):  
Chaman Lal Sabharwal

Finding the roots of non-linear and transcendental equations is an important problem in engineering sciences. In general, such problems do not have an analytic solution; the researchers resort to numerical techniques for exploring. We design and implement a three-way hybrid algorithm that is a blend of the Newton–Raphson algorithm and a two-way blended algorithm (blend of two methods, Bisection and False Position). The hybrid algorithm is a new single pass iterative approach. The method takes advantage of the best in three algorithms in each iteration to estimate an approximate value closer to the root. We show that the new algorithm outperforms the Bisection, Regula Falsi, Newton–Raphson, quadrature based, undetermined coefficients based, and decomposition-based algorithms. The new hybrid root finding algorithm is guaranteed to converge. The experimental results and empirical evidence show that the complexity of the hybrid algorithm is far less than that of other algorithms. Several functions cited in the literature are used as benchmarks to compare and confirm the simplicity, efficiency, and performance of the proposed method.


Author(s):  
Dr. Roopa K M ◽  
◽  
Venkatesha P ◽  

The aim of this article is to present a brief review and a numerical comparison of iterative methods applied to solve the polynomial equations with real coefficients. In this paper, four numerical methods are compared, namely: Horner’s method, Synthetic division with Chebyshev method (Proposed Method), Synthetic division with Modified Newton Raphson method and Birge-Vieta method which will helpful to the readers to understand the importance and usefulness of these methods.


2008 ◽  
Author(s):  
Kalyan S Perumalla ◽  
John P Wright ◽  
Phani Teja Kuruganti

2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Grégory Antoni

This paper deals with a new numerical iterative method for finding the approximate solutions associated with both scalar and vector nonlinear equations. The iterative method proposed here is an extended version of the numerical procedure originally developed in previous works. The present study proposes to show that this new root-finding algorithm combined with a stationary-type iterative method (e.g., Gauss-Seidel or Jacobi) is able to provide a longer accurate solution than classical Newton-Raphson method. A numerical analysis of the developed iterative method is addressed and discussed on some specific equations and systems.


Sign in / Sign up

Export Citation Format

Share Document