scholarly journals Masao Sakamoto and Akira Takada (2010) The distribution, and volcanic activity of the Miocene Neba Volcanic Field, Nagano Pref., Central Japan. Bull. Geol. Surv. Japan, vol. 61 (1/2), p. 39-56, 19 figs.

2010 ◽  
Vol 61 (1-2) ◽  
pp. 39-56 ◽  
Author(s):  
Masao Sakamoto ◽  
Akira Takada
2004 ◽  
Vol 46 (6) ◽  
pp. 558-573 ◽  
Author(s):  
M. Royo-Ochoa ◽  
L. M. Alva-Valdivia ◽  
J. Urrutia Fucugauchi ◽  
R. Chavez-Aguirre ◽  
A. Goguitchaichvili ◽  
...  

Author(s):  
I. T. Williamson ◽  
B. R. Bell

ABSTRACTPalaeocene volcanic activity is represented in west-central Skye, Inner Hebrides, Scotland, by a laterally extensive and thick pile of sub-aerial lavas mainly belonging to the alkali olivine basalt—hawaiite—mugearite—benmoreite—trachyte suite. The lavas are typical of many continental flood basalt suites and were principally fed from fissure eruptions similar to those of present day Iceland. Intercalated with the lavas are rare beds of heterogeneous volcaniclastic material, including breccias, conglomerates, sandstones and mudstones. The sequence forms a major portion of a larger volcanic field preserved within the NNE-SSW-elongated ‘Sea of the Hebrides’ sedimentary basin.Significant hiatuses in the volcanic activity are marked by deep-weathering profiles and thin sedimentary sequences comprising mudstones, ironstones, coals, sandstones and conglomerates. Palaeocurrent indicators and clast lithologies within the clastic sedimentary rocks indicate that erosion of a massif dominated by the Palaeocene Rum Igneous Complex and its roof rocks, c. 20 km to the S, provided abundant detritus to a river system which drained towards the N. Such sedimentary intercalations aid the stratigraphical subdivision of the lava field. Eight lava groups, each most likely with a different focus of fissure eruption, and divisible into mappable formations, together with two sedimentary formations, are recognised.The alkali olivine basalts are typically thin, with a tendency to form compound flows with limited lateral extents, whilst the hawaiites and mugearites are considerably thicker and cover large areas. Only very rarely are flow terminations observed. The original extents of the single benmoreite and rare trachytes cannot be determined from their limited erosional remnants. The more evolved flows tended to occur after brief hiatuses in the volcanic activity, indicated by well-developed lateritic tops to the underlying flows.The youngest preserved lava is a columnar-jointed olivine tholeiite with a MORB-like composition. The flow is at least 120 m thick and apparently ponded in a steep-sided palaeo-valley within the lava field.Three fault trends are recognised: parallel, normal and marginally oblique to the main NW-SEtrending regional dyke swarm, and dissect the lava field into a number of discrete blocks. The more significant of these faults may have been active during the development of the lava field, and in some instances instrumental in controlling the distribution of the flows.Later Tertiary erosion has removed an unknown thickness of material from the upper part of the lava field, the preserved thickness of which is estimated to be about 1·5 km.


2019 ◽  
Vol 486 (3) ◽  
pp. 336-340
Author(s):  
A. A. Shchetnikov ◽  
E. V. Bezrukova ◽  
E. V. Kerber ◽  
O. Yu. Belozerova ◽  
M. I. Kuz'min ◽  
...  

This article presents first tephrochronological data on the volcanic activity in the valley of the Jom-Bolok River (East Sayan Mountains, Siberia), which is the largest manifestation of the Holocene eruptions in Central Asia. The data results from our study of the proglacial Kaskadnoe-1 Lake situated near the Jom-Bolok basalt field. The lake sediments include a series of tephra-rich layers. Radiocarbon dating of the lake sediments provided a robust age model which allowed us to build timing of eruptions formed the Jom-Bolok volcanic field. We recognize two large phases of volcanism separated by almost 5 thousand years dormant phase. The first phase is traced back to ca. 14.3 cal ka BP and lasted until 6.3 cal  ka BP. Ten clusters of microtephra layers in the sediments of the first phase show 300-800 years recurrence of the volcanic events weakening upward. The event of 14.3-13.3 cal ka BP probably represents the strongest eruptions of the Jom-Bolok. The second phase started ca. 1.6 cal ka BP and highly likely continues in our days. Its strongest eruptions occurred between 1.6 and 0.8 cal ka BP with periodicity of 200 years. This tephrostratigraphy shows a multiplicity of the Jom-Bolok volcanic events and amplifies the earlier built scheme resulted from investigations of the stratified basalts, pyroclasts and lake damming events.


Geology ◽  
2021 ◽  
Author(s):  
J. Preine ◽  
J. Karstens ◽  
C. Hübscher ◽  
P. Nomikou ◽  
F. Schmid ◽  
...  

The Christiana-Santorini-Kolumbo volcanic field (CSKVF) in the Aegean Sea is one of the most active volcano-tectonic lineaments in Europe. Santorini has been an iconic site in volcanology and archaeology since the 19th century, and the onshore volcanic products of Santorini are one of the best-studied volcanic sequences worldwide. However, little is known about the chronology of volcanic activity of the adjacent submarine Kolumbo volcano, and even less is known about the Christiana volcanic island. In this study, we exploit a dense array of high-resolution marine seismic reflection profiles to link the marine stratigraphy to onshore volcanic sequences and present the first consistent chronological framework for the CSKVF, enabling a detailed reconstruction of the evolution of the volcanic rift system in time and space. We identify four main phases of volcanic activity, which initiated in the Pliocene with the formation of the Christiana volcano (phase 1). The formation of the current southwest-northeast–trending rift system (phase 2) was associated with the evolution of two distinct volcanic centers, the newly discovered Poseidon center and the early Kolumbo volcano. Phase 3 saw a period of widespread volcanic activity throughout the entire rift. The ongoing phase 4 is confined to the Santorini caldera and Kolumbo volcano. Our study highlights the fundamental tectonic control on magma emplacement and shows that the CSKVF evolved from a volcanic field with local centers that matured only recently to form the vast Santorini edifice.


Sign in / Sign up

Export Citation Format

Share Document