Effects of Curing Age and Fiber Volume Fraction on Flexural Behavior of High-Strength Steel Fiber-Reinforced Concrete

2016 ◽  
Vol 16 (4) ◽  
pp. 15-21 ◽  
Author(s):  
Seokjoon Jang ◽  
Hyundo Yun
2014 ◽  
Vol 597 ◽  
pp. 296-299 ◽  
Author(s):  
Kyung Lim Ahn ◽  
Seok Joon Jang ◽  
Yeon Jun Yun ◽  
Dae Geun Yu ◽  
Hyun Do Yun

The purpose of this study is to investigate the compressive and flexural properties of high-strength steel fiber reinforced concrete (SFRC). For this purpose, a total of 5 mixture whose variable is fiber volume fraction, were made and tested in a range of high strength with 70MPa. In case of normal and ultra-high strength, experimental results were collected from existing literatures on the tests conducted in South Korea. Flexural behavior of SFRC is enhanced according to the fiber volume fraction and compressive strength. Experimental and collected data were applied to existing equations, so it was found that the distinctions occurred between experimental or collected data and calculated values. Thus, more efforts are required to predict the flexural behavior of SFRC manufactured in South Korea with respect to the fiber volume fraction.


2013 ◽  
Vol 372 ◽  
pp. 223-226 ◽  
Author(s):  
Seok Joon Jang ◽  
Yeon Jun Yun ◽  
Hyun Do Yun

The effects of aggregate size and fiber volume fraction on the flexural behavior of 70MPa high strength steel fiber-reinforced concrete (SFRC) were investigated in this work. Test variables consist of fiber volume fraction (0, 1 and 2 %) and maximum aggregate size (8, 13 and 20 mm). The prism for flexural test was 100 x 100 x 400 mm and was tested under four points loading. Flexural toughness index was measured using ASTM C 1018 procedure. Test results indicated that the addition of steel fiber to 70MPa high strength concrete improves flexural and post-cracking behaviors. This phenomenon is remarkable for SFRC mixture with higher fiber content and smaller aggregate size. Also, the flexural toughness of high strength SFRC depends primarily on fiber content. The maximum aggregate sizes were secondary in importance.


2016 ◽  
Vol 709 ◽  
pp. 101-104 ◽  
Author(s):  
Seok Joon Jang ◽  
Gwon Young Jeong ◽  
Mi Hwa Lee ◽  
Keitetsu Rokugo ◽  
Hyun Do Yun

This paper presents results of experimental investigation to evaluation the effects of compressive strength on flexural behavior of steel fiber-reinforced concrete (SFRC). For this purpose, normal and high strength SFRCs with two different fiber volume fractions of 0.5 and 1.0% were prepared. Compressive strength, modulus of elasticity, flexural strength and toughness were measured with tests on SFRC cylinders and prisms. Test results indicated that steel fiber volume fraction significantly affects the flexural strength and toughness of SFRC. However, the high strength SFRC showed reduction in flexural toughness compared with the normal strength SFRC. It can be concluded that flexural behavior of SFRC depends on both compressive strength and fiber volume fraction.


2013 ◽  
Vol 372 ◽  
pp. 215-218 ◽  
Author(s):  
Hye Ran Kim ◽  
Seung Ju Han ◽  
Hyun Do Yun

This paper describes the experimental results of 70 MPa high strength steel fiber reinforced concrete (SFRC) with different steel fiber volume fractions in compression. The effect of steel fiber on fresh properties, compressive strength, toughness index, cracking procedure of high strength steel fiber concrete is also investigated. The steel fibers were added as the volume fractions of 0%, 0.5%, 1.0%, 1.5% and 2.0%. The cylindrical specimens with Φ100 x 200 for compressive tests were manufactured in accordance with ASTM C 39[. The experimental results showed that the slump of fresh SFRC was inversely proportional to the fiber volume fraction added to high strength concrete. As the addition of steel fiber increased, compressive strength of SFRC decreased. Inclusion of steel fiber improves compressive toughness of high strength SFRC.


2010 ◽  
Vol 163-167 ◽  
pp. 3569-3574
Author(s):  
Hong Qiang Cheng ◽  
Dan Ying Gao

Shrinkage experiments were done to determine the influence of the volume fraction of steel fiber-reinforcement on the bonding behavior between new concrete and old concrete. The mechanics of the model of restricted shrinkage upon the adherence of new steel fiber reinforced concrete to old concrete are described. The results demonstrate that the difference of shrinkage between the new and the old concrete can been reduced by adding steel fiber to the new concrete. The decrease of shrinkage difference reduces the shrinkage force at the adhesive interface, which improves the adhesion of new concrete to old concrete and the magnitude of the decrease of shrinkage difference is correlated to the steel fiber volume fraction.


2013 ◽  
Vol 742 ◽  
pp. 243-248
Author(s):  
Jian Song Yuan ◽  
Dan Ying Gao ◽  
Lin Yang

Based on the strength tests, including compressive strength, split tensile strength, shear strength , of steel fiber reinforced concrete (SFRC) with different concrete strength grades (C20~C50) at low fiber volume fraction (0~0.7%), the influences of concrete strength grades and steel fiber volume on concrete strengths were studied, and the effect significance levels of the two factors was analyzed through the binary variance analysis. The results show that when the concrete strength grades are amongst C20 ~ C50 and steel fiber volume rates lie in the range 0~0.7%,the strengths of SFRC rises as concrete strength grade and steel fiber volume ratio increase ; the influence of concrete grade is more significant than that of steel fiber volume ratio on compressive strength and split tensile strength of SFRC; the influence of steel fiber volume fraction is less significant than that of concrete strength grades on shear strength of SFRC.


Sign in / Sign up

Export Citation Format

Share Document