scholarly journals Torsional deformation of nonrelativistic string theory

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Ziqi Yan

Abstract Nonrelativistic string theory is a self-contained corner of string theory, with its string spectrum enjoying a Galilean-invariant dispersion relation. This theory is unitary and ultraviolet complete, and can be studied from first principles. In these notes, we focus on the bosonic closed string sector. In curved spacetime, nonrelativistic string theory is defined by a renormalizable quantum nonlinear sigma model in background fields, following certain symmetry principles that disallow any deformation towards relativistic string theory. We review previous proposals of such symmetry principles and propose a modified version that might be useful for supersymmetrizations. The appropriate target-space geometry determined by these local spacetime symmetries is string Newton-Cartan geometry. This geometry is equipped with a two-dimensional foliation structure that is restricted by torsional constraints. Breaking the symmetries that give rise to such torsional constraints in the target space will in general generate quantum corrections to a marginal deformation in the worldsheet quantum field theory. Such a deformation induces a renormalization group flow towards sigma models that describe relativistic strings.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Jaume Gomis ◽  
Ziqi Yan ◽  
Matthew Yu

Abstract Nonrelativistic open string theory is defined by a worldsheet theory that produces a Galilean invariant string spectrum and is described at low energies by a nonrelativistic Yang-Mills theory [1]. We study T-duality transformations in the path integral for the sigma model that describes nonrelativistic open string theory coupled to an arbitrary closed string background, described by a string Newton-Cartan geometry, Kalb-Ramond, and dilaton field. We prove that T-duality transformations map nonrelativistic open string theory to relativistic and noncommutative open string theory in the discrete light cone quantization (DLCQ), a quantization scheme relevant for Matrix string theory. We also show how the worldvolume dynamics of nonrelativistic open string theory described by the Dirac-Born-Infeld type action found in [1] maps to the Dirac-Born-Infeld actions describing the worldvolume theories of the DLCQ of open string theory and noncommutative open string theory.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Jacob Sonnenschein ◽  
Dorin Weissman

Abstract Classical rotating closed string are folded strings. At the folding points the scalar curvature associated with the induced metric diverges. As a consequence one cannot properly quantize the fluctuations around the classical solution since there is no complete set of normalizable eigenmodes. Furthermore in the non-critical effective string action of Polchinski and Strominger, there is a divergence associated with the folds. We overcome this obstacle by putting a massive particle at each folding point which can be used as a regulator. Using this method we compute the spectrum of quantum fluctuations around the rotating string and the intercept of the leading Regge trajectory. The results we find are that the intercepts are a = 1 and a = 2 for the open and closed string respectively, independent of the target space dimension. We argue that in generic theories with an effective string description, one can expect corrections from finite masses associated with either the endpoints of an open string or the folding points on a closed string. We compute explicitly the corrections in the presence of these masses.


1995 ◽  
Vol 10 (05) ◽  
pp. 441-450 ◽  
Author(s):  
R. PERCACCI ◽  
E. SEZGIN

We study the target space duality transformations in p-branes as transformations which mix the world volume field equations with Bianchi identities. We consider an (m+p+1)-dimensional space-time with p+1 dimensions compactified, and a particular form of the background fields. We find that while a GL (2) = SL (2) × R group is realized when m = 0, only a two-parameter group is realized when m > 0.


2003 ◽  
Vol 669 (1-2) ◽  
pp. 78-102 ◽  
Author(s):  
Hyeonjoon Shin ◽  
Katsuyuki Sugiyama ◽  
Kentaroh Yoshida

2006 ◽  
Vol 21 (04) ◽  
pp. 699-706 ◽  
Author(s):  
JULIUS KUTI

Bosonic string formation in gauge theories is reviewed with particular attention to the confining flux in lattice QCD and its string theory description. Recent results on the Casimir energy of the ground state and the string excitation spectrum are analyzed in the Dirichlet string limit of large separation between static sources. The closed string-soliton (torelon) with electric flux winding around a compact dimension is also discussed.


1994 ◽  
Vol 09 (11) ◽  
pp. 1009-1023
Author(s):  
H. ARFAEI ◽  
N. MOHAMMEDI

The implications of gauging the Wess-Zumino-Novikov-Witten (WZNW) model using the Gauss decomposition of the group elements are explored. We show that, contrary to the standard gauging of WZNW models, this gauging is carried out by minimally coupling the gauge fields. We find that this gauging, in the case of gauging and Abelian vector subgroup, differs from the standard one by terms proportional to the field strength of the gauge fields. We prove that gauging an Abelian vector subgroup does not have a nonlinear sigma model interpretation. This is because the target-space metric resulting from the integration over the gauge fields is degenerate. We demonstrate, however, that this kind of gauging has a natural interpretation in terms of Wakimoto variables.


1996 ◽  
Vol 11 (34) ◽  
pp. 2669-2679
Author(s):  
SWAPNA MAHAPATRA

Starting from the self-dual “triplet” of gravitational instanton solutions in Euclidean gravity, we obtain the corresponding instanton solutions in string theory by making use of the target space duality symmetry. We show that these dual triplet solutions can be obtained from the general dual Taub-NUT de Sitter solution through some limiting procedure as in the Euclidean gravity case. The dual gravitational instanton solutions obtained here are self-dual for some cases, with respect to certain isometries, but not always.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Davoud Kamani

Abstract The boundary state corresponding to the Dp-brane with a transverse rotation in the presence of the Kalb–Ramond and tachyon background fields and a U(1) internal field will be constructed. We shall investigate effects of the open string tachyon condensation on this brane via its boundary state. We demonstrate that the background fields and transverse rotation cannot protect the brane against the collapse. Our calculations are in the context of the bosonic string theory.


1994 ◽  
Vol 414 (1-2) ◽  
pp. 239-266 ◽  
Author(s):  
Clifford V. Johnson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document