chemical thermodynamics
Recently Published Documents


TOTAL DOCUMENTS

539
(FIVE YEARS 58)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
pp. 1-10
Author(s):  
Shaikh M. Rahman ◽  
Udaya B. Sathuvalli ◽  
P. V. Suryanarayana

Summary Temperature change and the pressure/volume/temperature (PVT) response of wellbore annular fluids are the primary variables that control annular pressure buildup in offshore wells. Though the physics of annular pressure buildup is well understood, there is some ambiguity in the PVT models of brines. While custom tests can be performed to determine the PVT response of brines, they are time-consuming and expensive. In this light, our paper presents a method to determine the density of brines from their chemical composition, as a function of pressure and temperature. It compares theoretical predictions with the results of tests on brines used in our industry and available test data from the oil and gas and other industries. In 1987, Kemp and Thomas used the principles of chemical thermodynamics to develop equations for the density of brines as a function of pressure and temperature and their electrolytic actions. However, their paper contained two (inadvertent, and probably typographical) errors. One of the errors lay in the set of the Debye-Hückel parameters, and the other was contained in the coefficients of the series expansion for the infinite dilution molal volume. Furthermore, they (inadvertently) did not mention the role of a crucial parameter that accounts for the interaction between the ionic constituents of the salt. As a result, nearly a generation of engineers in our industry has been unable to reproduce their valuable results or apply their technically rigorous results to other brine chemistries. In this paper, we return to the basic equations of chemical thermodynamics and the principles of stoichiometry and delineate the inadvertent errors that had crept into the Kemp and Thomas equations. We then present the rectified equations and reproduce their example with the corrected results. Further, we compare the predictions from the original Kemp and Thomas work with results from a leading chemical engineering model. Finally, we compare the results of theoretical models with test measurements from the laboratory and characterize the uncertainty inherent in each model. Thereby, we have rendered the Kemp and Thomas (1987) model useful to the well design community.


2021 ◽  
pp. 2102250
Author(s):  
Ning Wang ◽  
Xuemei Zhao ◽  
Jiawen Wang ◽  
Bingjie Yan ◽  
Shunxi Wen ◽  
...  

2021 ◽  
pp. 344-364
Author(s):  
Christopher O. Oriakhi

Chemical Thermodynamics discusses the fundamental laws of thermodynamics along with their relationships to heat, work, enthalpy, entropy, and temperature. Predicting the direction of a spontaneous change and calculating the change in entropy of a reaction are core concepts. The relationship between entropy, free energy and work is covered. The Gibbs free energy is used quantitatively to predict if reactions or processes are going to be exothermic and spontaneous or endothermic under the stated conditions. Also explored are the enthalpy and entropy changes during a phase change. Finally the Gibbs free energy of a chemical reaction is related to its equilibrium constant and the temperature.


2021 ◽  
Vol 447 (3) ◽  
pp. 44-47
Author(s):  
R.I. Jalmakhanbetova ◽  
Ye.M. Suleimen ◽  
B.K. Kasenov

One of the most important quantities in chemical thermodynamics and thermochemistry is the enthalpy of combustion. Of the currently existing methods for calculating the heat of combustion of natural and synthetic organic compounds, the most acceptable and correct in our case was the Karash method. In this study, the standard enthalpy of combustion, the standard enthalpy of formation, and the melting enthalpy of the antibiotic roseofungin and its cyclodextrin derivatives were calculated. As a result of the study, the thermodynamic constants of the standard enthalpies of combustion, standard enthalpies of formation, and the enthalpies of melting of the above compounds were calculated, which are of interest for physicochemical modeling of processes with their participation, serve as initial information arrays for loading into fundamental thermodynamic data banks and reference books, and is also important for standardization and certification of these complexes. It should be noted that the presence of a large number of hydroxyl groups in the structures of the studied complexes allows them to be attributed to polar compounds.


Sign in / Sign up

Export Citation Format

Share Document