natural language programming
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Author(s):  
George Shih ◽  
Hongyu Chen

Background The Radiological Society of North America (RSNA) receives more than 8000 abstracts yearly for scientific presentations, scientific posters, and scientific papers. Each abstract is assigned manually one of 16 top-level categories (e.g. "Breast Imaging") for workflow purposes. Additionally, each abstract receives a grade from 1-10 based on a variety of subjective factors such as style and perceived writing quality. Using machine learning to automate, at least partially, the categorization of abstract submissions can result in saving many hours of manual labor. Methods A total of 45527 RSNA abstract submissions from 2014 through 2019 were ingested, tokenized, and pre-processed with a standard natural language programming protocol. A bag-of-words (BOW) model was used as a baseline to evaluate two more sophisticated models, convolutional neural networks and recurrent neural networks, and also evaluate an ensemble model featuring all three neural networks. Results ensemble model was able to achieve 73% testing accuracy for classifying the 16 top-level categories, outperforming all other models. The top model for classifying abstract grade was also an ensemble model, achieving a mean average error (MAE) of 1.01. Conclusion While the baseline BOW model was the highest performing individual classifier, ensemble models that included state-of-the-art neural networks were able to outperform it. Our research shows that machine learning techniques can, to a reasonable degree of accuracy, predict both objective factors such as abstract category as well as subjective factors such as abstract grade. This work builds upon previous research involving using natural language processing on scientific abstracts to make useful inferences that address a meaningful problem.


The HMM research and development project concept (RDPC) uses factor-driven research and reasoning concept that is supported by a behaviour-driven development environment or a natural language programming that can be easily adopted by any RDPC, where the HMM framework offers such a high level factors editing their logic implementation environment that it can be used by any RDPC researchers without any prior knowledge in computer sciences, technical, or even advanced mathematics. The RDPC is a meta-model that can be used for research topics on enterprise architecture, business transformation or decision-making systems, mathematical models-algorithms. It is supported by many real-life cases. The uniqueness of this RDPC also promotes the future transformation project's unbundling and the alignment of various enterprise resources including services, architecture standards, and strategies to support business transformation processes as the first.


Author(s):  
Juliano Efson Sales ◽  
André Freitas ◽  
Douglas Oliveira ◽  
Adamantios Koumpis ◽  
Siegfried Handschuh

Sign in / Sign up

Export Citation Format

Share Document