optics fabrication
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Tianyi Wang ◽  
Lei Huang ◽  
Matthew Vescovi ◽  
Dennis Kuhne ◽  
Yi Zhu ◽  
...  

2021 ◽  
pp. 251659842110388
Author(s):  
Hari Narayan Singh Yadav ◽  
Manjesh Kumar ◽  
Abhinav Kumar ◽  
Manas Das

Nowadays, the surface quality of the material is crucial for industry and science. With the development of micro-electronics and optics, the demand for surface quality has become more and more rigorous, making optical surface polishing more and more critical. Plasma polishing technology is conceived as an essential tool for removing surface and subsurface damages from traditional polishing processes. The plasma processing technology is based on plasma chemical reactions and removes atomic-level materials. Plasma polishing can easily nano-finish hard-brittle materials such as ceramics, glass, crystal, fused silica, quartz, Safire, etc. The optical substrate with micro-level and nano-level surface roughness precision is in demand with the advancement in optics fabrication. The mechanical properties of super-finished optics materials are being used to fulfill the requirement of modern optics. This article discusses the processing of different types of freeform, complex and aspheric optical materials by the plasma polishing process used mainly by the optical industry. The plasma polishing devices developed in the last decade are thoroughly reviewed for their working principles, characteristics and applications. This article also examines the impact of various process parameters such as discharge power, rate of gas flow, mixed gas flow ratio and pressure on the plasma polishing process.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 589 ◽  
Author(s):  
Lucia Romano ◽  
Marco Stampanoni

High-aspect-ratio silicon micro- and nanostructures are technologically relevant in several applications, such as microelectronics, microelectromechanical systems, sensors, thermoelectric materials, battery anodes, solar cells, photonic devices, and X-ray optics. Microfabrication is usually achieved by dry-etch with reactive ions and KOH based wet-etch, metal assisted chemical etching (MacEtch) is emerging as a new etching technique that allows huge aspect ratio for feature size in the nanoscale. To date, a specialized review of MacEtch that considers both the fundamentals and X-ray optics applications is missing in the literature. This review aims to provide a comprehensive summary including: (i) fundamental mechanism; (ii) basics and roles to perform uniform etching in direction perpendicular to the <100> Si substrate; (iii) several examples of X-ray optics fabricated by MacEtch such as line gratings, circular gratings array, Fresnel zone plates, and other X-ray lenses; (iv) materials and methods for a full fabrication of absorbing gratings and the application in X-ray grating based interferometry; and (v) future perspectives of X-ray optics fabrication. The review provides researchers and engineers with an extensive and updated understanding of the principles and applications of MacEtch as a new technology for X-ray optics fabrication.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Weisi Li ◽  
Ping Zhou ◽  
Zhichao Geng ◽  
Ying Yan ◽  
Dongming Guo

To improve the efficiency of flat optics fabrication, a global correction method with the patterned polishing pad is developed in this paper. Through creating grooves on a polishing pad, the contact pressure distribution on the optics surface can be adjusted to change the material removal rate (MRR) distribution during polishing. Using the patterned pad, the selective removal ability of the polishing process is greatly enhanced. The predictability and stability of the MRR distribution are the preconditions to efficiently implement the proposed global correction method. Relying on the MRR distribution prediction method proposed and validated in this paper, the pad pattern can be designed based on the original surface figure of the workpieces. The designed groove pattern is created on the polishing pad using the custom-developed equipment. Then, the optical glass is polished on the designed pad with the optimized polishing time. A flat optical glass sample (Φ 100 mm) is polished with the global correction method to show its feasibility and advantage. The correction instance shows that the peak-to-valley (PV) value of the surface profile (with 3 mm edge exclusion) dropped from 1.17 µm to 0.2 µm in 14 min using a polyurethane pad with two ring grooves. Comparing with the conventional polishing process, which usually takes hours or days, the global correction method proposed in this paper can improve the efficiency of the optics manufacturing significantly.


Author(s):  
G. Brière ◽  
P. Ni ◽  
S. Héron ◽  
S. Chenot ◽  
S. Vézian ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document