corticomotoneuronal cells
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ali-Mohammad Kamali ◽  
Milad Kazemiha ◽  
Behnam Keshtkarhesamabadi ◽  
Mohsan Daneshvari ◽  
Asadollah Zarifkar ◽  
...  

AbstractTranscranial direct current stimulation (tDCS) is among the rapidly growing experimental approaches to enhance athletic performance. Likewise, novel investigations have recently addressed the effects of transcutaneous spinal Direct Current Stimulation (tsDCS) on motor functions such as reduced reaction time. The impact of tDCS, and tsDCS might be attributed to altered spontaneous neural activity and membrane potentials of cortical and corticomotoneuronal cells, respectively. Given the paucity of empirical research in non-invasive brain stimulation in sports neuroscience, especially in boxing, the present investigation studied the effects of neuromodulation on motor and cognitive functions of professional boxers. The study sample comprised 14 experienced male boxers who received random sequential real or sham direct current stimulation over the primary motor cortex (M1) and paraspinal region (corresponding to the hand area) in two sessions with a 72-h interval. Unlike sham stimulation, real stimulation improved selective attention and reaction time of the experienced boxers [enhanced selective attention (p < 0.0003), diminished right hand (p < 0.0001) and left hand reaction time (p < 0.0006)]. Meanwhile, the intervention left no impact on the participants’ cognitive functions (p > 0.05). We demonstrated that simultaneous stimulation of the spinal cord and M1 can improve the performance of experienced boxers through neuromodulation. The present study design may be extended to examine the role of neurostimulation in other sport fields.


Science ◽  
2015 ◽  
Vol 350 (6261) ◽  
pp. 667-670 ◽  
Author(s):  
D. M. Griffin ◽  
D. S. Hoffman ◽  
P. L. Strick

2014 ◽  
Vol 26 (1) ◽  
pp. 40-56 ◽  
Author(s):  
Sagi Perel ◽  
Andrew B. Schwartz ◽  
Valérie Ventura

Corticomotoneuronal cells (CMN), located predominantly in the primary motor cortex, project directly to alpha motoneuronal pools in the spinal cord. The effects of CMN spikes on motoneuronal excitability are traditionally characterized by visualizing postspike effects (PSEs) in spike-triggered averages (SpTA; Fetz, Cheney, & German, 1976 ; Fetz & Cheney, 1980 ; McKiernan, Marcario, Karrer, & Cheney, 1998 ) of electromyography (EMG) data. Poliakov and Schieber ( 1998 ) suggested a formal test, the multiple-fragment analysis (MFA), to automatically detect PSEs. However, MFA's performance was not statistically validated, and it is unclear under what conditions it is valid. This paper's contributions are a power study that validates the MFA; an alternative test, the single-snippet analysis (SSA), which has the same functionality as MFA but is easier to calculate and has better power in small samples; a simple bootstrap simulation to estimate SpTA baselines with simulation bands that help visualize potential PSEs; and a bootstrap adjustment to the MFA and SSA to correct for nonlinear SpTA baselines.


2009 ◽  
Vol 102 (2) ◽  
pp. 1040-1048 ◽  
Author(s):  
W. S. Smith ◽  
E. E. Fetz

To elucidate the cortical circuitry controlling primate forelimb muscles we investigated the synaptic interactions between neighboring motor cortex cells that had postspike output effects in target muscles. In monkeys generating isometric ramp-and-hold wrist torques, pairs of cortical cells were recorded simultaneously with independent electrodes and corticomotoneuronal (“CM”) cells were identified by their postspike effects on target forelimb muscles in spike-triggered averages (SpTAs) of electromyographs (EMGs). The response patterns of the cells were determined in response-aligned averages and their synaptic interactions were identified by cross-correlograms of action potentials. The possibility that synchronized firing between cortical cells could mediate spike-correlated effects in the SpTA of EMG was examined in several ways. Sixty-two pairs consisted of one CM cell and a non-CM cell; 15 of these had correlogram peaks of the same magnitude as that of other pairs, but the synchrony peaks did not mediate any postspike effect from the non-CM cell. Twelve pairs of simultaneously recorded CM cells were cross-correlated. Half had features (usually synchrony peaks) in their cross-correlograms and the cells of these pairs also shared some target muscles in common. The other half had flat correlograms and, in most of these pairs, the CM cells affected different muscles. The latter group included pairs of CM cells that facilitated synergistic muscles. These results indicate that common synaptic input specifically affects CM cells that have overlapping muscle fields. Reconstruction of the cortical locations of CM cells affecting 12 different muscles showed a wide and overlapping distribution of cortical colonies of forelimb muscles.


2009 ◽  
Vol 102 (2) ◽  
pp. 1296-1309 ◽  
Author(s):  
Elizabeth R. Williams ◽  
Demetris S. Soteropoulos ◽  
Stuart N. Baker

Slow finger movements in man are not smooth, but are characterized by 8- to 12-Hz discontinuities in finger acceleration thought to have a central source. We trained two macaque monkeys to track a moving target by performing index finger flexion/extension movements and recorded local field potentials (LFPs) and spike activity from the primary motor cortex (M1); some cells were identified as pyramidal tract neurons by antidromic activation or as corticomotoneuronal cells by spike-triggered averaging. There was significant coherence between finger acceleration in the approximately 10-Hz range and both LFPs and spikes. LFP–acceleration coherence was similar for flexion and extension movements (0.094 at 9.8 Hz and 0.11 at 6.8 Hz, respectively), but substantially smaller during steady holding (0.0067 at 9.35 Hz). The coherence phase showed a significant linear relationship with frequency over the 6- to 13-Hz range, as expected for a constant conduction delay, but the slope indicated that LFP lagged acceleration by 18 ± 14 or 36 ± 8 ms for flexion and extension movements, respectively. Directed coherence analysis supported the conclusion that the dominant interaction was in the acceleration to LFP (i.e., sensory) direction. The phase relationships between finger acceleration and both LFPs and spikes shifted by about π radians in flexion compared with extension trials. However, for a given trial type the phase relationship with acceleration was similar for cells that increased their firing during flexion or during extension trials. We conclude that movement discontinuities during slow finger movements arise from a reciprocally coupled network, which includes M1 and the periphery.


Sign in / Sign up

Export Citation Format

Share Document