cyanobacterial cell
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 9)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Chunlin Tan ◽  
Fei Tao ◽  
Ping Xu

Plastic pollution has become one of the most pressing environmental issues today, leading to an urgent need to develop biodegradable plastics1-3. Polylactic acid (PLA) is one of the most promising biodegradable materials because of its potential applications in disposable packaging, agriculture, medicine, and printing filaments for 3D printers4-6. However, current biosynthesis of PLA entirely uses edible biomass as feedstock, which leads to competition for resources between material production and food supply7,8. Meanwhile, excessive emission of CO2 that is the most abundant carbon source aggravates global warming, and climate instability. Herein, we first developed a cyanobacterial cell factory for the de novo biosynthesis of PLA directly from CO2, using a combinational strategy of metabolic engineering and high-density cultivation (HDC). Firstly, the heterologous pathway for PLA production, which involves engineered D-lactic dehydrogenase (LDH), propionate CoA-transferase (PCT), and polyhydroxyalkanoate (PHA) synthase, was introduced into Synechococcus elongatus PCC7942. Subsequently, different metabolic engineering strategies, including pathway debottlenecking, acetyl-CoA self-circulation, and carbon-flux redirection, were systematically applied, resulting in approximately 19-fold increase to 15 mg/g dry cell weight (DCW) PLA compared to the control. In addition, HDC increased cell density by 10-fold. Finally, the PLA titer of 108 mg/L (corresponding to 23 mg/g DCW) was obtained, approximately 270 times higher than that obtained from the initially constructed strain. Moreover, molecular weight (Mw, 62.5 kDa; Mn, 32.8 kDa) of PLA produced by this strategy was among the highest reported levels. This study sheds a bright light on the prospects of plastic production from CO2 using cyanobacterial cell factories.


2021 ◽  
pp. 139214
Author(s):  
Laura T. Wey ◽  
Joshua M. Lawrence ◽  
Xiaolong Chen ◽  
Robert Clark ◽  
David J. Lea-Smith ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Shanshan Zhang ◽  
Sini Zheng ◽  
Jiahui Sun ◽  
Xuexia Zeng ◽  
Yangkai Duan ◽  
...  

Photosynthetic biomanufacturing is a promising route for green production of biofuels and biochemicals utilizing carbon dioxide and solar energy. Cyanobacteria are important microbial platforms for constructing photosynthetic cell factories. Toward scaled outdoor cultivations in the future, high light and high temperature tolerances of cyanobacterial chassis strains and cell factories would be determinant properties to be optimized. We proposed a convenient strategy for rapidly improving high light and high temperature tolerances of an important cyanobacterial chassis Synechococcus elongatus PCC 7942 and the derived cell factories. Through introduction and isolation of an AtpA-C252F mutation, PCC 7942 mutants with improved high light and high temperature tolerances could be obtained in only 4 days with an antibiotics-free mode. Adopting this strategy, cellular robustness and sucrose synthesizing capacities of a PCC 7942 cell factory were successfully improved.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anabella Aguilera ◽  
Marina Klemenčič ◽  
Daniela J. Sueldo ◽  
Piotr Rzymski ◽  
Leda Giannuzzi ◽  
...  

Cyanobacteria are globally widespread photosynthetic prokaryotes and are major contributors to global biogeochemical cycles. One of the most critical processes determining cyanobacterial eco-physiology is cellular death. Evidence supports the existence of controlled cellular demise in cyanobacteria, and various forms of cell death have been described as a response to biotic and abiotic stresses. However, cell death research in this phylogenetic group is a relatively young field and understanding of the underlying mechanisms and molecular machinery underpinning this fundamental process remains largely elusive. Furthermore, no systematic classification of modes of cell death has yet been established for cyanobacteria. In this work, we analyzed the state of knowledge in the field of cyanobacterial cell death. Based on that, we propose unified criterion for the definition of accidental, regulated, and programmed forms of cell death in cyanobacteria based on molecular, biochemical, and morphologic aspects following the directions of the Nomenclature Committee on Cell Death (NCCD). With this, we aim to provide a guide to standardize the nomenclature related to this topic in a precise and consistent manner, which will facilitate further ecological, evolutionary, and applied research in the field of cyanobacterial cell death.


2021 ◽  
Author(s):  
Jiaohong Zhao ◽  
Yuanyuan Jiang ◽  
Yuhao Tian ◽  
Jun Mao ◽  
Lanzhen Wei ◽  
...  

2019 ◽  
Author(s):  
Tomáš Zavřel ◽  
Marjan Faizi ◽  
Cristina Loureiro ◽  
Gereon Poschmann ◽  
Kai Stühler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document