patch quality
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 19)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Vol 288 (1951) ◽  
pp. 20210459
Author(s):  
Annette L. Fayet ◽  
Alasdair I. Houston

The inverse optimality approach can allow us to learn about an animal's environment by assuming their behaviour is optimal. This approach has been applied to animals diving underwater for food to produce the index of patch quality (IPQ), which aims to provide a proxy for prey abundance or quality in a foraging patch based on the animal's diving behaviour. The IPQ has been used in several empirical studies but has never been evaluated theoretically. Here, we discuss the strengths and weaknesses of the IPQ approach from a theoretical angle and review the empirical evidence supporting its use. We highlight several potential issues, in particular with the gain function—the function describing the energetic gain of an animal during a dive—used to calculate the IPQ. We investigate an alternative gain function which is appropriate in some cases, provide a new model based on this function, and discuss differences between the IPQ model and ours. We also find that there is little supporting empirical evidence justifying the general use of the IPQ and suggest future empirical validation methods which could help strengthen the case for the IPQ. Our findings have implications for the field of diving ecology and habitat assessment.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jessica Ann Phillips ◽  
Annette L. Fayet ◽  
Tim Guilford ◽  
Fabrizio Manco ◽  
Victoria Warwick-Evans ◽  
...  

Abstract Background According to central place foraging theory, animals will only increase the distance of their foraging trips if more distant prey patches offer better foraging opportunities. Thus, theory predicts that breeding seabirds in large colonies could create a zone of food depletion around the colony, known as “Ashmole’s halo”. However, seabirds’ decisions to forage at a particular distance are likely also complicated by their breeding stage. After chicks hatch, parents must return frequently to feed their offspring, so may be less likely to visit distant foraging patches, even if their quality is higher. However, the interaction between prey availability, intra-specific competition, and breeding stage on the foraging decisions of seabirds is not well understood. The aim of this study was to address this question in chinstrap penguins Pygoscelis antarcticus breeding at a large colony. In particular, we aimed to investigate how breeding stage affects foraging strategy; whether birds foraging far from the colony visit higher quality patches than available locally; and whether there is evidence for intraspecific competition, indicated by prey depletions near the colony increasing over time, and longer foraging trips. Methods We used GPS and temperature-depth recorders to track the foraging movements of 221 chinstrap penguins from 4 sites at the South Orkney Islands during incubation and brood. We identified foraging dives and calculated the index of patch quality based on time allocation during the dive to assess the quality of the foraging patch. Results We found that chinstrap penguin foraging distance varied between stages, and that trips became shorter as incubation progressed. Although patch quality was lower near the colony than at more distant foraging patches, patch quality near the colony improved over the breeding season. Conclusions These results suggest chinstrap penguin foraging strategies are influenced by both breeding stage and prey distribution, and the low patch quality near the colony may be due to a combination of depletion by intraspecific competition but compensated by natural variation in prey. Reduced trip durations towards the end of the incubation period may be due to an increase in food availability, as seabirds time their reproduction so that the period of maximum energy demand in late chick-rearing coincides with maximum resource availability in the environment. This may also explain why patch quality around the colony improved over the breeding season. Overall, our study sheds light on drivers of foraging decisions in colonial seabirds, an important question in foraging ecology.


2021 ◽  
Author(s):  
Anna Skye Bruce ◽  
Wayne E. Thogmartin ◽  
Chris Trosen ◽  
Karen Oberhauser ◽  
Claudio Gratton

Abstract Context It is estimated that over one billion milkweed stems need to be restored to sustain the eastern North American migratory population of monarch butterflies; where and in what context the stems should be placed on the landscape is key to addressing habitat deficits. Objectives We assessed how the amount of appropriate habitat surrounding a particular patch of monarch habitat affects monarch presence and reproduction. To ensure that habitat restoration efforts are targeted towards areas that maximize monarch population growth, it is important to understand the effects of landscape heterogeneity on monarch occurrence in habitat patches (i.e. grasslands with milkweeds) across the landscape. Methods Over two summers (2018-2019), we surveyed monarch adults, larvae, and eggs at sixty grassland sites in Wisconsin that varied in patch size and landscape context (proportion grassland, forest edge density, and road density). We also estimated milkweed density and floral richness to characterize local patch quality. Results Adult monarch abundance was highest at patches with the lowest proportion of surrounding grassland and lowest road density, and was heavily influenced by patch quality variables. Egg and larva density in a patch increased with milkweed density and floral richness within a patch. Patch size was unrelated to monarch abundance. Conclusions These results suggest that optimal sites for monarch habitat restoration are within landscapes with less surrounding habitat and that high milkweed density and floral richness should be conservation goals.


Oryx ◽  
2021 ◽  
pp. 1-8
Author(s):  
Rodrigo Costa-Araújo ◽  
André Luis Regolin ◽  
Felipe Martello ◽  
João Pedro Souza-Alves ◽  
Tomas Hrbek ◽  
...  

Abstract Tropical forest hotspots have a high diversity of species but have lost > 70% of their original vegetation cover and are characterized by a multitude of small and isolated fragments. Paradoxically, conservation actions in these areas are still mainly focused on protection of large tracts of forests, a strategy now infeasible because of the small area of forest remnants. Here we use the Vulnerable black-handed titi monkey Callicebus melanochir as a model to study the effects of habitat loss, fragmentation and degradation on arboreal mammals and to provide insights for science-driven conservation in fragmented landscapes in tropical forest hotspots. We surveyed 38 Atlantic Forest fragments in Bahia State, Brazil and assessed the effects of patch area, quality and visibility, and landscape connectivity on the occurrence of our model species. Patch area was the single best model explaining species occurrence. Nonetheless, patch quality and visibility, and landscape connectivity, positively affect occurrence. In addition to patch area, patch quality, patch visibility and landscape connectivity are useful for predicting the occurrence of arboreal mammals in the fragments of tropical forest hotspots. We encourage the assessment of habitat quality (based on remotely sensed vegetation indices) and habitat visibility (based on digital elevation models) to improve discoverability of arboreal mammal populations and selection of fragments for conservation purposes across fragmented landscapes of tropical forest hotspots. Large remnants of tropical forest hotspots are scarce and therefore we require baseline data to support conservation actions and management in small forest fragments.


Author(s):  
Gabriel M. Barrile ◽  
Annika Walters ◽  
Matthew Webster ◽  
Anna D. Chalfoun

Author(s):  
Sabine J. Cudney-Valenzuela ◽  
Víctor Arroyo-Rodríguez ◽  
Ellen Andresen ◽  
Tarin Toledo-Aceves ◽  
Francisco Mora-Ardila ◽  
...  

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2102
Author(s):  
Yukun Dong ◽  
Meng Wu ◽  
Li Zhang ◽  
Wenjing Yin ◽  
Mengying Wu ◽  
...  

Automated program repair is an effective way to ensure software quality and improve software development efficiency. At present, there are many methods and tools of automated program reapir in real world, but most of them have low repair accuracy, resulting in a large number of incorrect patches in the generated patches. To solve this problem, we propose a patch quality evaluation method based on semantic distance, which measures the semantic distance of patches by using features of interval distance, output coverage, and path matching. For each evaluation feature, we give a quantitative formula to obtain a specific distance value and use the distance to calculate the recommended patch value to measure the quality of the patch. Our quality evaluation method evaluated 279 patches from previous program repair tools, including Nopol, DynaMoth, ACS, jGenProg, and CapGen. This quality evaluation method successfully arranged the correct patches before the plausible but incorrect patches, and it recommended the higher-ranked patches to users first. On this basis, we compared our evaluation method with the existing evaluation methods and judged the evaluation ability of each feature. We showed that our proposed patch quality evaluation method can improve the repair accuracy of repair tools.


Sign in / Sign up

Export Citation Format

Share Document