biocompatible nanoparticle
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 9)

H-INDEX

4
(FIVE YEARS 2)

2021 ◽  
Vol 19 ◽  
Author(s):  
Haijun Shen ◽  
Qianqian Gao ◽  
Tingting Liu ◽  
Haoran Wang ◽  
Ran Zhang ◽  
...  

Background:: The combination of photothermal therapy (PTT) and chemotherapy has proven to be a promising strategy for cancer treatment. Various nanomaterials have shown great potential in combination therapy, including gold, graphene oxide, iron oxide, and other nanoparticles. However, their undefinable toxicity in vivo greatly slowed down their development for clinical applications. Objective: The present work aimed to develop a multifunctional nanoparticle for chemo-photothermal therapy composed of acknowledged biocompatible materials. Methods: A novel biocompatible nanoparticle (HIT-NPs) was self-assembled through the intrinsic interaction between D-α-tocopherol Succinate (TOS), human serum albumin (HSA) and indocyanine green (ICG). Doxorubicin (DOX) was then loaded due to the ion pairing between DOX and TOS. The feasibility of combined chemo-photothermal therapy induced by DOX-loaded HIT-NPs was carefully evaluated. Results: In vitro, HIT-NPs showed no cytotoxicity on human normal liver cells (HL-7702 cells) but obvious killing effects murine breast cancer cells (4T1 cells). The combined chemo-photothermal therapeutic effect on 4T1 cells was successfully obtained. DOX-loaded HIT-NPs could effectively accumulate in 4T1 subcutaneous tumors after intravenous injection, and the tumor temperature rapidly increased under laser exposure, indicating the feasibility of PTT in vivo. Conclusion: The self-assembled HIT-NPs could provide a promising platform for combined chemo-photothermal cancer therapy with full biocompatibility.


2020 ◽  
Vol 7 (1) ◽  
pp. 53-104 ◽  
Author(s):  
Moumita Saha ◽  
Asish R. Das

: Nanoparticle catalyzed synthesis is a green and convenient method to achieve most of the chemical transformations in water or other green solvents. Nanoparticle ensures an easy isolation process of catalyst as well as products from the reaction mixture avoiding the hectic work up procedure. Zinc oxide is a biocompatible, environmentally benign and economically viable nanocatalyst with effectivity comparable to the other metal nanocatalyst employed in several reaction strategies. This review mainly focuses on the recent applications of zinc oxide in the synthesis of biologically important heterocyclic molecules under sustainable reaction conditions. : Application of zinc oxide in organic synthesis: Considering the achievable advantages of this nanocatalyst, presently several research groups are paying attention in anchoring zincoxide or its modified structure in several types of organic conversions e.g. multicomponent reactions, ligand-free coupling reactions, cycloaddition reaction, etc. The advantages and limitations of this nanocatalyst are also demonstrated. The present study aims to highlight the recent multifaceted applications of ZnO towards the synthesis of diverse heterocyclic motifs. Being a promising biocompatible nanoparticle, this catalyst has an important contribution in the fields of synthetic chemistry and medicinal chemistry.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 330 ◽  
Author(s):  
Janaszewska ◽  
Lazniewska ◽  
Trzepiński ◽  
Marcinkowska ◽  
Klajnert-Maculewicz

Drug delivery systems are molecular platforms in which an active compound is packed into or loaded on a biocompatible nanoparticle. Such a solution improves the activity of the applied drug or decreases its side effects. Dendrimers are promising molecular platforms for drug delivery due to their unique properties. These macromolecules are known for their defined size, shape, and molecular weight, as well as their monodispersity, the presence of the void space, tailorable structure, internalization by cells, selectivity toward cells and intracellular components, protection of guest molecules, and controllable release of the cargo. Dendrimers were tested as carriers of various molecules and, simultaneously, their toxicity was examined using different cell lines. It was discovered that, in general, dendrimer cytotoxicity depended on the generation, the number of surface groups, and the nature of terminal moieties (anionic, neutral, or cationic). Higher cytotoxicity occurred for higher-generation dendrimers and for dendrimers with positive charges on the surface. In order to decrease the cytotoxicity of dendrimers, scientists started to introduce different chemical modifications on the periphery of the nanomolecule. Dendrimers grafted with polyethylene glycol (PEG), acetyl groups, carbohydrates, and other moieties did not affect cell viability, or did so only slightly, while still maintaining other advantageous properties. Dendrimers clearly have great potential for wide utilization as drug and gene carriers. Moreover, some dendrimers have biological properties per se, being anti-fungal, anti-bacterial, or toxic to cancer cells without affecting normal cells. Therefore, intrinsic cytotoxicity is a comprehensive problem and should be considered individually depending on the potential destination of the nanoparticle.


2019 ◽  
Vol 4 (6) ◽  
pp. 1318-1325 ◽  
Author(s):  
Leander Crocker ◽  
Philipp Koehler ◽  
Patrick Bernhard ◽  
Antonina Kerbs ◽  
Tijmen Euser ◽  
...  

Hybrid flavin–polydopamine nanoparticles combine the activity of an enzyme cofactor with the stabilising and electron-transfering properties of nanostructured poly-dopamine to afford a green and biocompatible catalytic system tuneable by visible light.


2019 ◽  
Vol 126 ◽  
pp. 27-39 ◽  
Author(s):  
A.P. Ananda ◽  
H.M. Manukumar ◽  
N.B. Krishnamurthy ◽  
B.S. Nagendra ◽  
K.R. Savitha

Sign in / Sign up

Export Citation Format

Share Document