Self-assembled tocopherol-albumin nanoparticles with full biocompatibility for chemo-photothermal therapy against breast cancer

2021 ◽  
Vol 19 ◽  
Author(s):  
Haijun Shen ◽  
Qianqian Gao ◽  
Tingting Liu ◽  
Haoran Wang ◽  
Ran Zhang ◽  
...  

Background:: The combination of photothermal therapy (PTT) and chemotherapy has proven to be a promising strategy for cancer treatment. Various nanomaterials have shown great potential in combination therapy, including gold, graphene oxide, iron oxide, and other nanoparticles. However, their undefinable toxicity in vivo greatly slowed down their development for clinical applications. Objective: The present work aimed to develop a multifunctional nanoparticle for chemo-photothermal therapy composed of acknowledged biocompatible materials. Methods: A novel biocompatible nanoparticle (HIT-NPs) was self-assembled through the intrinsic interaction between D-α-tocopherol Succinate (TOS), human serum albumin (HSA) and indocyanine green (ICG). Doxorubicin (DOX) was then loaded due to the ion pairing between DOX and TOS. The feasibility of combined chemo-photothermal therapy induced by DOX-loaded HIT-NPs was carefully evaluated. Results: In vitro, HIT-NPs showed no cytotoxicity on human normal liver cells (HL-7702 cells) but obvious killing effects murine breast cancer cells (4T1 cells). The combined chemo-photothermal therapeutic effect on 4T1 cells was successfully obtained. DOX-loaded HIT-NPs could effectively accumulate in 4T1 subcutaneous tumors after intravenous injection, and the tumor temperature rapidly increased under laser exposure, indicating the feasibility of PTT in vivo. Conclusion: The self-assembled HIT-NPs could provide a promising platform for combined chemo-photothermal cancer therapy with full biocompatibility.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yue Yang ◽  
Ting Fang ◽  
Yi-Lan Cao ◽  
Ya-Xin Lv ◽  
Qing-Qi Chang ◽  
...  

Background. Hedyotis diffusa (HD) Willd. and Scutellaria barbata (SB) D. Don in different ratios have been frequently used to treat various cancers in clinical Traditional Chinese Medicine prescriptions. However, the optimal ratio, active fraction, and molecular mechanisms associated with the anti-breast cancer role of this herbal couplet have not been elaborated. Methods. To screen out the optimal ratio of this herbal couplet, we compare aqueous extracts of HD, SB, or HD plus SB in different weight ratios (HS11, HS12, HS21) for their anticancer effects on murine breast cancer 4T1 cells in vitro and in vivo. EA11, the ethyl acetate fraction from HS11 (the aqueous extract of the couplet at an equal weight ratio), is further assessed for its antiproliferative effect as well as the antitumorigenic impact with the aid of immunocompetent mice. Colony formation, flow cytometry, western blot, ELISA, and qRT-PCR are used to elucidate mechanisms underlying EA11-led effects. Results. HS11 presents the most potential suppression of 4T1 cell proliferation and tumor growth among these aqueous extracts. The comparison results show that EA11 is more effective than HS11 in vitro and in vivo. EA11 inhibits colony formation and induces apoptosis in a concentration-dependent manner. EA11 reduces the protein expressions of PDE7B, PD-L1, β-catenin, and cyclin D1 while elevating the concentration of cellular cAMP and miR-200c expression in 4T1 cells. Additionally, EA11 exerts its anticancer effect partially via the inactivation of MAPK and AKT signaling pathways. Conclusions. This study implicates that EA11 prevents breast tumor development by interfering with the miR-200c-PDE7B/PD-L1-AKT/MAPK axis. EA11 may represent a potential therapeutic candidate for breast cancer.


2012 ◽  
Author(s):  
Παναγιώτης Δαλέζης

Pathophysiology of Bone metastases in breast and prostate cancerwith the aid of in vivo mice models; Effect of hormonal analoguesBone metastases are a frequent compilation of cancer, occurringin up to 70 percent of patients with advanced breast and prostate cancer.An extensive line of research has documented that bones constitutes afavorable microenvironment for homing prostate and breast cancercells. Metastases can be osteoblastic, osteolytic, or mixed; they resultfrom increased osteoclastic activity due to an imbalance betweenRANK ligand expression and OPG expression. In breast cancer,osteolytic lesions are most common, whereas in prostate cancer,osteoblastic lesions predominate. In the present work we tested:• The anticancer effects of dexamethasone (DEX), octreotide(OCT), docetaxel (DOC) and their combination on the TRAMP-C1prostate cancer model, in vitro and in vivo.• The anticancer effects of DEX, OCT, adriamycin (ADR) andtheir combination on 4T1 breast cancer model, in vitro and in vivo.• TRAMP-C1 and 4T1 cells were first characterized forsomatostatin receptors (SSTR 1-5) expression and then inoculated ontothe femur of C57Bl and BALB/c mice, respectively. Investigationprotocols included TRAMP-C1 and 4T1 cell proliferation, migrationand invasion assays, in vitro, and the analysis of radiographic images ofbone lesions and the survival of diseased animals.We documented that:• The TRAMP-C1 cells express the SSTR-1, -2, -3 and -5 and arecapable of producing osteoblastic lesions onto the femur of C57Blmice. DEX, OCT and DOC exerted significant anticancer effects onTRAMP-C1 cell proliferation, invasion and migration assays, in vitro.The triple combination treatment scheme (DEX-OCT-DOC) showed asignificant synergistic/additive anticancer effects, reducing by 5-foldthe dose of DOC required for maximal anticancer effects, in vitro. Inaddition, the triple combination regimen produced significantanticancer effects on TRAMP-C1 cell invasion assays better than anysingle agent treatment scheme, with the exception of DEX, whichproduced the maximal inhibitory effect on TRAMP-C1 cell invasionassay. Furthermore, DEX and OCT, when administered as single orcombination treatment schemes did not produce significant anticancereffects on the overall survival of the diseased animals, according to thecriteria established by NCI [Treated animals vs Controls (T/C >125%)].DOC produced a significant anticancer effect, which reflected to theshrinkage of the bone lesions and to a significant increase of the overallsurvival of diseased animals (T/C = 133%), however, the administration of DEX plus OCT regimen prior to DOC therapysignificantly improved the DOC anticancer effects on bone lesions andoverall survival (T/C = 150%). This data suggest that neoadjuvantadministration of DEX plus OCT regimen can improve the anticanceractions of DOC on TRAM-C1 prostate cancer models in vitro and invivo.• The 4T1 cells express the SSTR-2, -3, -4 and -5 and are capableof producing osteolytic lesions onto the femur of BALB/c mice. OCTand DEX induce a dose dependent cell death in vitro. When OCTcombined with DEX showed an antagonistic effect on 4T1 cell line.The combination of OCT plus DEX was ineffective on growthinhibition. The combination of OCT and DEX with ADR had also anantagonistic effect in 4T1 cell line. On the other hand, the singletreatment schemes revealed that the invasion capacity of 4T1 cells wasinhibited by 26% using DEX, by 15% using OCT, and increased by13.2% using ADR single- agent treatment schemes. However, the triplecombination treatment scheme resulted in stimulation by 37.3% of the4T1 cell invasion capability.OCT does not result in significant increase of lifespan of the 4T1 bearing mice, as a single agent (T/C = 105.3%). When we treated 4T1breast cancer bearing mice with DEX and DEX plus OCT, theirmedium survival time (MST) was reduced (T/C= 97.4 % and 94.7 %respectively) to the MST of the untreated animal group (controlT/C=100%). On the other hand, when ADR was used alone, asignificant increase to the lifespan of the mice (T/C = 144.7 %).However, when all three drugs were used in combination, the antitumoractivity of ADR was neutralized (T/C = 110.5%). Also, the animalstreated with combination of the drugs developed more extensiveosteolytic bone destruction than the untreated animals or the animalstreated with one drug alone. This data indicated that the combination ofOCT with DEX in the treatment of 4T1 mouse breast cancer isineffective. The simultaneous use of these drugs should be carefullyconsidered because they also neutralized the antitumor activity of theADR.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Jonathas Xavier Pereira ◽  
Sofia Nascimento dos Santos ◽  
Thaís Canuto Pereira ◽  
Mariana Cabanel ◽  
Roger Chammas ◽  
...  

Galectin-3 (Gal-3) is a multifunctional β-galactoside-binding lectin that once synthesized is expressed in the nucleus, cytoplasm, cell surface, and extracellular environment. Gal-3 plays an important role in breast cancer tumors due to its ability to promote interactions between cell-cell and cell-extracellular matrix (ECM) elements, increasing tumor survival and metastatic dissemination. Still, the mechanism by which Gal-3 interferes with tumor cell migration and metastasis formation is complex and not fully understood. Here, we showed that Gal-3 knockdown increased the migration ability of 4T1 murine breast cancer cells in vitro. Using the 4T1 orthotopic breast cancer spontaneous metastasis mouse model, we demonstrated that 4T1-derived tumors were significantly larger in the presence of Gal-3 (scramble) in comparison with Gal-3 knockdown 4T1-derived tumors. Nevertheless, Gal-3 knockdown 4T1 cells were outnumbered in the bone marrow in comparison with scramble 4T1 cells. Finally, we reported here a decrease in the content of cell-surface syndecan-1 and an increase in the levels of chondroitin sulfate proteoglycans such as versican in Gal-3 knockdown 4T1 cells both in vitro and in vivo. Overall, our findings establish that Gal-3 downregulation during breast cancer progression regulates cell-associated and tumor microenvironment glycosaminoglycans (GAGs)/proteoglycans (PG), thus enhancing the metastatic potential of tumor cells.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 279-279
Author(s):  
Ana Carolina Silveira Rabelo ◽  
Shirley Arbizu ◽  
Maria Angelica Miglino ◽  
Susanne Talcott ◽  
Giuliana Noratto

Abstract Objectives To investigate the mechanisms underlying the breast cancer anti-invasive activity of DSC phenolics enriched in anthocyanins (ACN) in vitro and their potential in vivo. Methods 4T1 cells were treated with ACN extracted from DSC concentrate juice (FruitSmart, Grandview, WA) within dose range 20–80 µg cyanidin 3-glucoside equivalent (C3G)/mL to assess reactive oxygen species (ROS) levels using carboxy-H2DFFDA probe and cell viability using the resazurin kit (Sigma-Aldrich, St Louis, MO). Protein and mRNA expression were investigated using standard procedures and cell migration by wound healing assay. The pilot in vivo study was performed with 4T1 cells orthotopically injected into mammary fat pads of BALB/c mice (Envigo, Houston, TX, USA) (n = 4). After tumor growth, animals were gavaged with ACN (150 mg C3G/kg body weight/day, n = 2) or saline solution (control, n = 2) for one week followed by euthanasia and collection of tumors, lungs, and liver tissues for analyses. Results ACN induced ROS production (up to 5.13-fold of control) and inhibited cell viability by 50% (IC50) at 58.6 µg C3G/mL. The ACN (IC50 dose) treatment downregulated phospho-ERK1/2 and upregulated phospho-p38 proteins, linked to cell growth inhibition and caspase-dependent apoptosis mediated by the increase in cleaved/total caspase-3 protein ratio (∼3-fold of control) and suppression of total PARP (∼0.4-fold of control). ACN also suppressed the Akt/mTOR/CREB pathway that promotes proliferation and invasion. 4T1 cell migration was inhibited by 22%, consistent with the phospho-Src downregulation (down to ∼ 0.25-fold of control), that regulate epithelial-mesenchymal transition. Phospho-ERK1/2 and phospho-CREB were downregulated in mice tumors. This was accompanied by the downregulation of Cenpf mRNA in liver and lungs, which correlates with poor prognosis and metastasis, thus supporting the in vitro findings. Conclusions ACN provides a dietary alternative to fight human breast cancer invasion by incorporating DSC into the diet. More studies are guarantee to help improve the quality of life of breast cancer patients. Funding Sources This work was supported by the Northwest Cherry Growers. The authors thank the support of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Brazil for providing Ana Carolina Silveira Rabelo the scholarship.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1769
Author(s):  
Sung-Won Shin ◽  
Changhoon Choi ◽  
Hakyoung Kim ◽  
Yeeun Kim ◽  
Sohee Park ◽  
...  

Tumor migration and invasion induced by the epithelial-to-mesenchymal transition (EMT) are prerequisites for metastasis. Here, we investigated the inhibitory effect of a mimic of superoxide dismutase (SOD), cationic Mn(III) ortho-substituted N-n-hexylpyridylporphyrin (MnTnHex-2-PyP5+, MnHex) on the metastasis of breast cancer in cellular and animal models, focusing on the migration of tumor cells and the factors that modulate this behavior. Wound healing and Transwell migration assays revealed that the migration of mouse mammary carcinoma 4T1 cells was markedly reduced during the concurrent treatment of MnHex and radiation therapy (RT) compared with that of the control and RT alone. Bioluminescence imaging showed that MnHex/RT co-treatment dramatically reduced lung metastasis of 4T1 cells in mice, compared with the sham control and both single treatments. Western blotting and immunofluorescence showed that MnHex treatment of 4T1 cells reversed the RT-induced EMT via inhibiting AKT/GSK-3β/Snail pathway in vitro, thereby decreasing cell migration and invasion. Consistently, histopathological analyses of 4T1 tumors showed that MnHex/RT reduced Snail expression, blocked EMT, and in turn suppressed metastases. Again, in the human metastatic breast cancer MDA-MB-231 cell line, MnHex inhibited metastatic potential in vitro and in vivo and suppressed the RT-induced Snail expression. In addition to our previous studies showing tumor growth inhibition, this study demonstrated that MnHex carries the ability to minimize the metastatic potential of RT-treated cancers, thus overcoming their radioresistance.


2021 ◽  
Vol 11 ◽  
Author(s):  
Norman Reppingen ◽  
Alexander Helm ◽  
Laura Doleschal ◽  
Marco Durante ◽  
Claudia Fournier

The tyrosine kinase inhibitor Cabozantinib has been applied in clinical studies in combination with radiotherapy. We investigated the effect of such combination on triple-negative 4T1 cells as a metastatic breast cancer model in vitro and in vivo upon inoculation in BALB/c mice. In vitro assays indicated a potential for improved effects using the combination. Both Cabozantinib (2.5 µM) and 10 Gy of 250 kV x-rays were able to cease the growth of 4T1 cells as revealed by growth curves. In a clonogenic survival assay, the effect of Cabozantinib added on the effects of irradiation and the effectiveness of inhibiting the clonogenic survival was found to be 2 (RBE10). Additionally, cell death measurements of apoptosis plus necrosis revealed a synergistic effect when combining irradiation with Cabozantinib. Surprisingly, however, in vivo tumor growth kinetics showed no additional effect in growth control when irradiation was used together with Cabozantinib. Since both ionizing radiation and Cabozantinib are acknowledged to feature immunogenic effects, we additionally investigated the effect of the treatments on lung metastases. No difference to the control groups was found here, neither for irradiation nor Cabozantinib alone nor in combination. Yet, upon analysis of the mice’ livers, CD11b-positive cells, indicating immune suppressive myeloid derived suppressor cells were found diminished following treatment with Cabozantinib. In conclusion, despite promising in vitro controls of the combination of Cabozantinib and irradiation, tumor growth control was not increased by the combination, which was true also for the occurrence of lung metastases.


2021 ◽  
Author(s):  
Enyu Shi ◽  
Liya Bai ◽  
Lujia Mao ◽  
Hanping Wang ◽  
Xiaoying Yang ◽  
...  

Abstract Background: Periodontitis is a chronic inflammatory disease in oral cavity owing to bacterial infection. Photothermal therapy (PTT) and photodynamic therapy (PDT) have many advantages for antibacterial treatment. As an excellent photosensitizer, indocyanine green (ICG) shows prominent photothermal and photodynamic performances. However, it is difficult to pass through the negatively charged bacterial cell membrane, thus limits its antibacterial efficacy for periodontitis treatment.Results: In this work, we developed a nanosystem from self-assembly of ICG and polycationic brush for synergistic PTT and PDT against periodontitis. A star-shaped polycationic brush, poly(2-(dimethylamino)ethyl methacrylate) (sPDMA), was synthesized via atom transfer radical polymerization (ATRP) of DMA monomer from bromo-substituted β-cyclodextrin initiator (CD-Br). ICG was then self-assembled with sPDMA to form ICG-loaded sPDMA (sPDMA@ICG) nanoparticles (NPs), and the physicochemical properties of these NPs were characterized in detail. In vitro antibacterial effects of sPDMA@ICG NPs were evaluated in porphyromonas gingivalis (Pg), one of the recognized periodontitis pathogens, and in vivo anti-periodontitis effects of NPs were investigated in a rat periodontitis model. Benefiting from the unique brush-shaped architecture of sPDMA polycation, sPDMA@ICG NPs efficiently delivered ICG into the bacterial cells through promoting their adsorption and penetration abilities, and also exhibited effective antibacterial and anti-periodontitis actions via synergistic PTT and PDT both in vitro and in vivo.Conclusions: This work developed a promising nano-photosensitizer for synergistic PTT and PDT for antibacterial and periodontitis treatments in clinic.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2670 ◽  
Author(s):  
Noraini Nordin ◽  
Swee Keong Yeap ◽  
Heshu Sulaiman Rahman ◽  
Nur Rizi Zamberi ◽  
Nurul Elyani Mohamad ◽  
...  

Cancer nano-therapy has been progressing rapidly with the introduction of many novel drug delivery systems. The previous study has reported on the in vitro cytotoxicity of citral-loaded nanostructured lipid carrier (NLC-Citral) on MDA-MB-231 cells and some preliminary in vivo antitumor effects on 4T1 breast cancer cells challenged mice. However, the in vivo apoptosis induction and anti-metastatic effects of NLC-Citral have yet to be reported. In this study, the in vitro cytotoxic, anti-migration, and anti-invasion effects of NLC-Citral were tested on 4T1 breast cancer cells. In addition, the in vivo antitumor effects of oral delivery of NLC-Citral was also evaluated on BALB/c mice induced with 4T1 cells. In vitro cytotoxicity results showed that NLC-Citral and citral gave similar IC50 values on 4T1 cells. However, wound healing, migration, and invasion assays reflected better in vitro anti-metastasis potential for NLC-Citral than citral alone. Results from the in vivo study indicated that both NLC-Citral and citral have anti-tumor and anti-metastasis effects, whereby the NLC-Citral showed better efficacy than citral in all experiments. Also, the delay of tumor progression was through the suppression of the c-myc gene expression and induction of apoptosis in the tumor. In addition, the inhibition of metastasis of 4T1 cells to lung and bone marrow by the NLC-Citral and citral treatments was correlated with the downregulation of metastasis-related genes expression including MMP-9, ICAM, iNOS, and NF-kB and the angiogenesis-related proteins including G-CSF alpha, Eotaxin, bFGF, VEGF, IL-1alpha, and M-CSF in the tumor. Moreover, NLC-Citral showed greater downregulation of MMP-9, iNOS, ICAM, Eotaxin, bFGF, VEGF, and M-CSF than citral treatment in the 4T1-challenged mice, which may contribute to the better anti-metastatic effect of the encapsulated citral. This study suggests that NLC is a potential and effective delivery system for citral to target triple-negative breast cancer.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 675
Author(s):  
Chun Chu ◽  
Zhihong Bao ◽  
Meng Sun ◽  
Xiaowei Wang ◽  
Hongyan Zhang ◽  
...  

The combination of chemotherapy and phototherapy has attracted increasing attention for cancer treatment in recent years. In the current study, porous PdPt bimetallic nanoparticles (NPs) were synthesized and used as delivery carriers for the anti-cancer drug doxorubicin (DOX). DOX@PdPt NPs were modified with thiol functionalized hyaluronic acid (HA-SH) to generate DOX@PdPt@HA NPs with an average size of 105.2 ± 6.7 nm. Characterization and in vivo and in vitro assessment of anti-tumor effects of DOX@PdPt@HA NPs were further performed. The prepared DOX@PdPt@HA NPs presented a high photothermal conversion efficiency of 49.1% under the irradiation of a single 808 nm near-infrared (NIR) laser. Moreover, NIR laser irradiation-induced photothermal effect triggered the release of DOX from DOX@PdPt@HA NPs. The combined chemo-photothermal treatment of NIR-irradiated DOX@PdPt@HA NPs exerted a stronger inhibitory effect on cell viability than that of DOX or NIR-irradiated PdPt@HA NPs in mouse mammary carcinoma 4T1 cells in vitro. Further, the in vivo combination therapy, which used NIR-irradiated DOX@PdPt@HA NPs in a mouse tumor model established by subcutaneous inoculation of 4T1 cells, was demonstrated to achieve a remarkable tumor-growth inhibition in comparison with chemotherapy or photothermal therapy alone. Results of immunohistochemical staining for caspase-3 and Ki-67 indicated the increased apoptosis and decreased proliferation of tumor cells contributed to the anti-tumor effect of chemo-photothermal treatment. In addition, DOX@PdPt@HA NPs induced negligible toxicity in vivo. Hence, the developed nanoplatform demonstrates great potential for applications in photothermal therapy, drug delivery and controlled release.


Author(s):  
S. Zheng ◽  
W. Fu ◽  
R. Ma ◽  
Q. Huang ◽  
J. Gu ◽  
...  

Abstract Purpose To explore the effects of the intervening measure targeting myeloid differentiation 2 (MD2) on breast cancer progression in vitro and in vivo. Methods The expression of MD2 in normal breast cells (Hs 578Bst) and three kinds of breast carcinoma cell lines (MCF-7, MDA-MB-231 s and 4T1) were detected by western blot. MTT assay was used to detect the proliferation of 4T1 cells treated by L6H21, cell migration and invasion was measured by wound healing assay and trans-well matrigel invasion assay, respectively. In addition, to further study the role of MD2 in tumor progression, we assessed the effects of inhibition of MD2 on the progression of xenograft tumors in vivo. Results The expression of MD2 is much higher in MDA-MB-231 s and 4T1cells than that in normal breast cells (Hs 578Bst) or MCF-7 cells (p < 0.05). In vitro, suppression of MD2 by L6H21 has a significant inhibition of proliferation, migration and invasion in 4T1 cells in dose-dependent manner. In vivo, L6H21 pretreatment significantly improved survival of 4T1-bearing mice (p < 0.05). Additionally, we also observed that none of the mice died from the toxic effect of 10 mg kg−1 L6H21 in 60 days. Conclusion Overall, this work indicates that suppression of MD2 shows progression inhibition in vitro and significantly prolong survival in vivo. These findings provide the potential experimental evidence for using MD2 as a therapeutic target of breast carcinoma.


Sign in / Sign up

Export Citation Format

Share Document