scholarly journals Supplemental Material: A trans-Iapetus transform fault control for the evolution of the Rheic Ocean: Implications for an early Paleozoic transition of accretionary tectonics

Author(s):  
Lei Wu ◽  
et al.

Figure S1: Alternative sets of mean poles. Table S1: Paleomagnetic data from Domeier (2016). Table S2–4: Alternative mean poles for Gondwana, Laurentia and Baltica.

2022 ◽  
Author(s):  
Lei Wu ◽  
et al.

Figure S1: Alternative sets of mean poles. Table S1: Paleomagnetic data from Domeier (2016). Table S2–4: Alternative mean poles for Gondwana, Laurentia and Baltica.


2018 ◽  
Vol 55 (10) ◽  
pp. 1173-1182 ◽  
Author(s):  
Fereshteh Ranjbar Moghadam ◽  
Fariborz Masoudi ◽  
Fernando Corfu ◽  
Seyed Massoud Homam

The assembly of Gondwana in the Ediacaran was concluded by extensive arc magmatism along its northern margin. Extensional events in the early Paleozoic led to rifting and the eventual separation of terranes, which were later assimilated in different continents and orogens. The Sibak area of northeastern Iran records these events, including late Precambrian volcanic-sedimentary processes, metamorphism, and magmatism. A granite at Chahak in the Sibak Complex yields a zircon U–Pb age of 548.3 ± 1.1 Ma, whereas a spatially associated gabbro has an age of 471.1 ± 0.9 Ma. The latter corresponds to the earliest stages of rifting in the nearby Alborz domain, with the deposition of clastic sedimentary sequences, basaltic volcanism, and, as indicated by indirect evidence, coeval granitic plutonism. The Chahak gabbro is thus one of the earliest witnesses of the rifting processes that eventually led to the development of the Rheic Ocean and were indirectly linked to subduction of Iapetus at the Laurentian margin and the early development of the Appalachian orogen.


2018 ◽  
Vol 470 (1) ◽  
pp. 265-287 ◽  
Author(s):  
J. Brendan Murphy ◽  
R. Damian Nance ◽  
J. Duncan Keppie ◽  
Jaroslav Dostal

AbstractThe geological evolution of Avalonia was fundamental to the first application of plate tectonic principles to the pre-Mesozoic world. Four tectonic phases have now been identified. The oldest phase (760–660 Ma) produced a series of oceanic arcs, some possibly underlain by thin slivers of Baltica crust, which accreted to the northern margin of Gondwana between 670 and 650 Ma. Their accretion to Gondwana may be geodynamically related to the break-up of Rodinia. After accretion, subduction zones stepped outboard, producing the main phase (640–570 Ma) of arc-related magmatism and basin formation that was coeval with the amalgamation of Gondwana. Arc magmatism terminated diachronously between 600 and 540 Ma by the propagation of a San Andreas style transform fault, followed by the Early Paleozoic platformal succession used by Wilson to define the eastern flank of the proto-Atlantic (Iapetus) Ocean. This implies the ocean outboard from the northern Gondwanan margin survived into the Cambrian. Avalonia is one of several terranes distributed obliquely with respect to the adjacent cratonic provinces of Gondwana and Baltica, implying that these terranes evolved on different cratonic basements. As a result, their ages and differing isotopic signatures can be used to reconstruct their respective locations along the ancient continental margin.


Geology ◽  
2019 ◽  
Vol 47 (8) ◽  
pp. 767-770 ◽  
Author(s):  
Rolf L. Romer ◽  
Uwe Kroner

Abstract Sea-level rise after the Hirnantian glaciation resulted in the global inundation of continental shelf areas and the widespread formation of early Silurian black shales. Black shales that were deposited on shelves receiving drainage from earlier glaciated areas have high uranium (U) contents because large-scale glacial erosion brought rocks with leachable U to the surface. In contrast, black shales receiving drainage from non-glaciated areas that had lost leachable U earlier have low U contents. Early Silurian U-rich shales formed only on shelf areas that had not been separated from earlier-glaciated mainland Gondwana by oceanic lithosphere. Therefore, early Silurian U-rich black shales within the Variscan orogen provide direct evidence that these areas had not been separated from mainland Gondwana, but were part of the same, contiguous shelf. This implies that the Rheic Ocean was the only pre-Silurian ocean that opened during the early Paleozoic extension of the peri-Gondwana shelf.


2012 ◽  
Vol 49 (1) ◽  
pp. 259-288 ◽  
Author(s):  
Jeffrey C. Pollock ◽  
James P. Hibbard ◽  
Cees R. van Staal

The eastern edge of the Appalachian orogen is composed of a collection of Neoproterozoic – early Paleozoic domains, Avalonia, Carolinia, Ganderia, Meguma, and Suwannee, which are exotic to North America. Differences in the geological histories of these peri-Gondwanan domains indicate that each separated independently from Gondwana, opening the Rheic Ocean in their wake. Cambrian departure of Ganderia and Carolina was followed by the Ordovician separation of Avalonia and Silurian separation of Meguma. After separation in the early Paleozoic, these domains constituted the borderline between the expanding Rheic Ocean and contracting Iapetus Ocean. They were transferred to Laurentia by early Silurian closure of Iapetus and Devonian–Carboniferous closure of the Rheic Ocean during the assembly of Gondwana and Laurentia into Pangaea. The first domain to arrive at Laurentia was Carolinia, which accreted in the Middle Ordovician during the Cherokee orogeny. Salinic accretion of Ganderia occurred shortly thereafter and was followed by the Acadian accretion of Avalonia. The Acadian orogeny was immediately followed by Middle Devonian – Early Carboniferous accretion of Meguma and possibly Suwannee which led to the Fammenian orogeny. The episodicity of orogeny suggests that the present location of these domains parallels their order of accretion. However, each of these crustal blocks was translated along strike by large-scale Late Devonian – Carboniferous dextral strike–slip motion. The breakup of Pangaea occurred outboard of the Paleozoic collision zones that accreted Carolinia, Ganderia, Avalonia, Meguma, and Suwannee to Laurentia, leaving these terranes appended to North America during the Mesozoic opening of the Atlantic.


Author(s):  
Eugene J. Amaral

Examination of sand grain surfaces from early Paleozoic sandstones by electron microscopy reveals a variety of secondary effects caused by rock-forming processes after final deposition of the sand. Detailed studies were conducted on both coarse (≥0.71mm) and fine (=0.25mm) fractions of St. Peter Sandstone, a widespread sand deposit underlying much of the U.S. Central Interior and used in the glass industry because of its remarkably high silica purity.The very friable sandstone was disaggregated and sieved to obtain the two size fractions, and then cleaned by boiling in HCl to remove any iron impurities and rinsed in distilled water. The sand grains were then partially embedded by sprinkling them onto a glass slide coated with a thin tacky layer of latex. Direct platinum shadowed carbon replicas were made of the exposed sand grain surfaces, and were separated by dissolution of the silica in HF acid.


Sign in / Sign up

Export Citation Format

Share Document