skarn deposit
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 94)

H-INDEX

24
(FIVE YEARS 5)

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Yury O. Redin ◽  
Anna A. Redina ◽  
Viktor P. Mokrushnikov ◽  
Alexandra V. Malyutina ◽  
Vladislav F. Dultsev

The Kultuma deposit is among the largest and most representative Au–Cu–Fe–skarn deposits situated in Eastern Transbaikalia. However, its genetic classification is still a controversial issue. The deposit is confined to the similarly named massif of the Shakhtama complex, which is composed mainly of quartz monzodiorite-porphyry and second-phase monzodiorite-porphyry. The magmatic rocks are characterized by a low Fe2O3/FeO ratio, low magnetic susceptibility and belong to meta-aluminous, magnesian high-potassic calc-alkalic reduced granitoids of type I. The results of 40Ar-39Ar and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating showed that the formation of magmatic rocks proceeded during the Late Jurassic time: 161.5–156.8 Ma. Relatively low Ce/Ce*, Eu/Eu* and Dy/Yb ratios in the zircons indicate that the studied magmatic rocks were formed under relatively reduced conditions and initially contained a rather low amount of magmatic water. A mineralogical–geochemical investigation allowed us to outline five main stages (prograde skarn, retrograde skarn, potassic alteration, propylitic (hydrosilicate) alteration and late low-temperature alteration) of mineral formation, each of them being characterized by a definite paragenetic mineral association. The major iron, gold and copper ores were formed at the stage of retrograde skarn and potassic alteration, while the formation of polymetallic ores proceeded at the stage of propylitic alteration. The obtained timing of the formation of retrograde skarn (156.3 Ma) and magmatic rocks of the Shakhtama complex, along with the direct geological observations, suggest their spatial–temporal and genetic relationship. The data obtained on the age of magmatic rocks and ore mineralization are interpreted as indicating the formation of the Kultuma deposit that proceeded at the final stages of collision. Results of the investigation of the isotope composition of S in sulfide minerals point to their substantial enrichment with the heavy sulfur isotope (δ34S from 6.6 to 16‰). The only exclusion with anomalous low δ34S values (from 1.4 to 3.7‰) is pyrrhotite from retrograde skarns of the Ochunogda region. These differences are, first of all, due to the composition of the host rocks. Results of the studies of C and O isotope composition allow us to conclude that one of the main sources of carbon was the host rocks of the Bystrinskaya formation, while the changes in the isotope composition of oxygen are mainly connected with decarbonization processes and the interactions of magmatic fluids, host rocks and meteoric waters. The fluids that are responsible for the formation of the mineral associations of retrograde skarns and the zones of potassic alteration at the Kultuma deposit were reduced, moderately hot (~360–440 °С) and high-pressure (estimated pressure is up to 2.4 kbar). The distinguishing features of the fluids in the zones of potassic alteration at the Ochunogda region are a lower concentration and lower estimated pressure values (~1.7 kbar). The propylitic alteration took place with the participation of reduced lower-temperature (~280–320 °C) and lower-pressure (1–1.2 kbar) fluids saturated with carbon dioxide, which were later on diluted with meteoric waters to become more water-rich and low-temperature (~245–260 °C). The studies showed that the main factors that affected the distribution and specificity of mineralization are magmatic, lithological and structural–tectonic ones. Results of the studies allow us to classify the Kultuma deposit as a Au–Cu–Fe–skarn deposit related to reduced intrusion.


2021 ◽  
pp. 104657
Author(s):  
Igor González-Pérez ◽  
José M. González-Jiménez ◽  
Fernando Gervilla ◽  
Isabel Fanlo ◽  
Fernando Tornos ◽  
...  

2021 ◽  
pp. 60-69
Author(s):  
U.A. Yatimov ◽  
N.N. Ankusheva ◽  
M.A. Rassomakhin

Fluid inclusions are studied in calcite from magnetite ores and sulfde-carbonate veins of the Aktash sulfde-magnetite deposit (Western Karanazar, Tajikistan) to identify their formation conditions. The deposit is confned to a contact zone between carbonate (Upper Devonian–Lower Carboniferous dolomite and limestones) and intrusive rocks (Middle Carboniferous–Early Triassic granodiorites and porphyry granodiorites) of the Kansai ore feld. The fuid inclusion study showed that calcite of ore veins formed from moderately saline (4.4–10.8 wt. % NaCl-equiv.) aqueous Na-K ± Mg chloride fuids at a decreasing temperature from 300 to 160 °C. The homogenization temperatures of fuid inclusions are consistent with thermometric data for chlorite, which formed together with calcite (176–295 °C). Keywords: calcite, chlorite, formation conditions, fuid inclusions, polymetallic ores, magnetite ores, Aktash deposit, Western Karamazar.


2021 ◽  
pp. 104585
Author(s):  
Mingjun Tian ◽  
Xiaochun Li ◽  
Jinghui Guo ◽  
Yonggang Li ◽  
Yu Zhang

Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 408
Author(s):  
Olga Yakubovich ◽  
Ilya Vikentyev ◽  
Ekaterina Ivanova ◽  
Mary Podolskaya ◽  
Ivan Sobolev ◽  
...  

We report on the application of the U-Th-He method for the direct dating of pyrite from the alteration halo of the Novogodnee-Monto Au-Fe-skarn deposit, Polar Urals. The deposit is genetically related to the formation of volcanogenic complexes of the Ural Paleozoic belt. A modification of the original methodology for measuring U, Th and He isotopes in a single grain allowed us to determine a U-Th-He age of 382 ± 8 Ma (2σ) based on six pyrite samples from the altered rocks of the deposit (U mass fraction ~0.2 mg/kg; Th/U ~ 3.5; 4He specific volume ~ 10−5 cm3·STP·g−1). This age is consistent with estimates of the age of ore formation and coeval with the end of the period of island arc magmatic activity. Our results indicate that U-Th-He dating for pyrite samples of ~1 mg in weight from the hydrothermal-metasomatic halo of ore bodies is possible, providing a crucial next step in the development of U-Th-He pyrite geochronology.


Sign in / Sign up

Export Citation Format

Share Document