harmonic loading
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 87 (12) ◽  
pp. 42-47
Author(s):  
S. G. Lebedinsky ◽  
O. V. Naumov

The results of experimental studies of the fatigue crack development in 20GFL steel specimens cut from a cast bolster of a freight car are presented. The ratio of the threshold stress intensity coefficient Kth determined from the kinetic diagram of fatigue fracture and from the average parameters of the operational loading process is considered using the experimental results with a simulation of operational loading. Tests were carried out upon the development of permanent blocks of crack opening in the specimen (in a rigid loading mode). The operational process is presented in the form of a block of consecutive loading cycles recorded during the test of the car frame in conditions typical for a straight section of the railway track. The threshold operational level is determined by the algorithm of gradual reduction of the loading similar to the original process. The regularities in a decrease of the rate of crack development and corresponding decrease in the load were determined. Subsequent extrapolation of the obtained experimental regularities to zero value of the crack propagation rate provided estimation of the threshold loading level, similar to the initially specified value. It is shown that the value of the threshold level of the fatigue crack development in low-alloy steel 20GFL obtained from the fatigue fracture diagram (i.e., under harmonic loading) is significantly higher than that obtained from the estimate based on the average values of the operational loading process. The considered model of operational loading gives greater damage compared to harmonic loading, on the basis of which the survivability of structural elements is usually assessed.


2021 ◽  
Author(s):  
Jiří Náprstek ◽  
Cyril Fischer

Ball-type tuned mass absorbers are growing in popularity. They combine a multi-directional effect with compact dimensions, properties that make them attractive for use at slender structures prone to wind excitation. Their main drawback lies in limited adjustability of damping level to a prescribed value. Insufficient damping makes ball-type absorbers more prone than pendula to objectionable effects stemming from the non-linear character of the system. Thus, the structure and design of the damping device have to be made so that the autoparametric resonance states, occurrence of which depends on system parameters and properties of possible excitation, are avoided for safety reasons. This chapter summarises available 3D mathematical models of a ball-pendulum and introduces the non-linear approach based on the Appell–Gibbs function. Efficiency of the models is then illustrated for the case of kinematic and random excitation. Interaction of the absorber and the harmonically forced simple linear structure is numerically analysed. Finally, the chapter provides examples of typical patterns of the autoparametric response and outlines possibilities of applications in practical engineering.


Author(s):  
Masoud Forsat ◽  
Farayi Musharavati ◽  
Arameh Eyvazian ◽  
Murat Demiral ◽  
Afrasyab Khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document