inverted repeat sequence
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 2)

H-INDEX

15
(FIVE YEARS 1)

2020 ◽  
Vol 117 (12) ◽  
pp. 6531-6539 ◽  
Author(s):  
Kyle E. Watters ◽  
Haridha Shivram ◽  
Christof Fellmann ◽  
Rachel J. Lew ◽  
Blake McMahon ◽  
...  

Anti-CRISPRs (Acrs) are small proteins that inhibit the RNA-guided DNA targeting activity of CRISPR-Cas enzymes. Encoded by bacteriophage and phage-derived bacterial genes, Acrs prevent CRISPR-mediated inhibition of phage infection and can also block CRISPR-Cas-mediated genome editing in eukaryotic cells. To identify Acrs capable of inhibitingStaphylococcus aureusCas9 (SauCas9), an alternative to the most commonly used genome editing proteinStreptococcus pyogenesCas9 (SpyCas9), we used both self-targeting CRISPR screening and guilt-by-association genomic search strategies. Here we describe three potent inhibitors of SauCas9 that we name AcrIIA13, AcrIIA14, and AcrIIA15. These inhibitors share a conserved N-terminal sequence that is dispensable for DNA cleavage inhibition and have divergent C termini that are required in each case for inhibition of SauCas9-catalyzed DNA cleavage. In human cells, we observe robust inhibition of SauCas9-induced genome editing by AcrIIA13 and moderate inhibition by AcrIIA14 and AcrIIA15. We also find that the conserved N-terminal domain of AcrIIA13–AcrIIA15 binds to an inverted repeat sequence in the promoter of these Acr genes, consistent with its predicted helix-turn-helix DNA binding structure. These data demonstrate an effective strategy for Acr discovery and establish AcrIIA13–AcrIIA15 as unique bifunctional inhibitors of SauCas9.


2012 ◽  
Vol 102 (3) ◽  
pp. 552-560 ◽  
Author(s):  
Elizabeth G. Wheatley ◽  
Susan N. Pieniazek ◽  
Ishita Mukerji ◽  
D.L. Beveridge

2011 ◽  
Vol 166 (6) ◽  
pp. 484-493 ◽  
Author(s):  
Keiko Nakade ◽  
Hisayuki Watanabe ◽  
Yuichi Sakamoto ◽  
Toshitsugu Sato

Virology ◽  
2011 ◽  
Vol 410 (2) ◽  
pp. 327-335 ◽  
Author(s):  
ByungChul Ahn ◽  
Yunfei Zhang ◽  
Nikolaus Osterrieder ◽  
Dennis J. O'Callaghan

2010 ◽  
Vol 192 (17) ◽  
pp. 4327-4336 ◽  
Author(s):  
Erin L. Benanti ◽  
Peter T. Chivers

ABSTRACT NikR is a nickel-responsive ribbon-helix-helix transcription factor present in many bacteria and archaea. The DNA binding properties of Escherichia coli and Helicobacter pylori NikR (factors EcNikR and HpNikR, respectively) have revealed variable features of DNA recognition. EcNikR represses a single operon by binding to a perfect inverted repeat sequence, whereas HpNikR binds to promoters from multiple genes that contain poorly conserved inverted repeats. These differences are due in large part to variations in the amino acid sequences of the DNA-contacting β-sheets, as well as residues preceding the β-sheets of these two proteins. We present here evidence of another variation in DNA recognition by the NikR protein from Geobacter uraniireducens (GuNikR). GuNikR has an Arg-Gly-Ser β-sheet that binds specifically to an inverted repeat sequence distinct from those recognized by Ec- or HpNikR. The N-terminal residues that precede the GuNikR β-sheet residues are required for high-affinity DNA binding. Mutation of individual arm residues dramatically reduced the affinity of GuNikR for specific DNA. Interestingly, GuNikR tetramers are capable of binding cooperatively to the promoter regions of two different genes, nik(MN)1 and nik(MN)2. Cooperativity was not observed for the closely related G. bemidjiensis NikR, which recognizes the same operator sequence. The cooperative mode of DNA binding displayed by GuNikR could affect the sensitivity of transporter gene expression to changes in intracellular nickel levels.


2006 ◽  
Vol 188 (3) ◽  
pp. 874-881 ◽  
Author(s):  
Diane M. Bodenmiller ◽  
Stephen Spiro

ABSTRACT Microarray studies of the Escherichia coli response to nitric oxide and nitrosative stress have suggested that additional transcriptional regulators of this response remain to be characterized. We identify here the product of the yjeB gene as a negative regulator of the transcription of the ytfE, hmpA and ygbA genes, all of which are known to be upregulated by nitrosative stress. Transcriptional fusions to the promoters of these genes were expressed constitutively in a yjeB mutant, indicating that all three are targets for repression by YjeB. An inverted repeat sequence that overlaps the −10 element of all three promoters is proposed to be a binding site for the YjeB protein. A similar inverted repeat sequence was identified in the tehA promoter, which is also known to be sensitive to nitrosative stress. The ytfE, hmpA, ygbA, and tehA promoters all caused derepression of a ytfE-lacZ transcriptional fusion when present in the cell in multiple copies, presumably by a repressor titration effect, suggesting the presence of functional YjeB binding sites in these promoters. However, YjeB regulation of tehA was weak, as judged by the activity of a tehA-lacZ fusion, perhaps because YjeB repression of tehA is masked by other regulatory mechanisms. Promoters regulated by YjeB could be derepressed by iron limitation, which is consistent with an iron requirement for YjeB activity. The YjeB protein is a member of the Rrf2 family of transcriptional repressors and shares three conserved cysteine residues with its closest relatives. We propose a regulatory model in which the YjeB repressor is directly sensitive to nitrosative stress. On the basis of similarity to the nitrite-responsive repressor NsrR from Nitrosomonas europaea, we propose that the yjeB gene of E. coli be renamed nsrR.


2005 ◽  
Vol 187 (5) ◽  
pp. 1849-1855 ◽  
Author(s):  
Yoshitsugu Nakaguchi ◽  
Mitsuaki Nishibuchi

ABSTRACT We determined the transcriptional start site of the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus by using a PCR-based method and identified the promoter. Mutagenic analysis indicated that the promoter-bearing region rather than its downstream inverted repeat sequence was responsible for the low-revel of trh transcription.


2004 ◽  
Vol 24 (21) ◽  
pp. 9542-9556 ◽  
Author(s):  
Tae Soo Kim ◽  
Hye Young Kim ◽  
Jin Ho Yoon ◽  
Hyen Sam Kang

ABSTRACT In the yeast Saccharomyces diastaticus, expression of the STA1 gene, which encodes an extracellular glucoamylase, is activated by the specific DNA-binding activators Flo8, Mss11, Ste12, and Tec1 and the Swi/Snf chromatin-remodeling complex. Here we show that Flo8 interacts physically and functionally with Mss11. Flo8 and Mss11 bind cooperatively to the inverted repeat sequence TTTGC-n-GCAAA (n = 97) in UAS1-2 of the STA1 promoter. In addition, Flo8 and Mss11 bind indirectly to UAS2-1 of the STA1 promoter by interacting with Ste12 and Tec1, which bind to the filamentation and invasion response element (FRE) in UAS2-1. Furthermore, our findings indicate that the Ste12, Tec1, Flo8, and Mss11 activators and the Swi/Snf complex bind sequentially to the STA1 promoter, as follows: Ste12 and Tec1 bind first to the FRE, whereby they recruit the Swi/Snf complex to the STA1 promoter. Next, the Swi/Snf complex enhances Flo8 and Mss11 binding to UAS1-2. In the final step, Flo8 and Mss11 directly promote association of RNA polymerase II with the STA1 promoter to activate STA1 expression. In the absence of glucose, the levels of Flo8 and Tec1 are greatly increased, whereas the abundances of two repressors, Nrg1 and Sfl1, are reduced, suggesting that the balance of transcriptional regulators may be important for determining activation or repression of STA1 expression.


Microbiology ◽  
2003 ◽  
Vol 149 (12) ◽  
pp. 3413-3421 ◽  
Author(s):  
Ahmed Gaballa ◽  
Min Cao ◽  
John D. Helmann

Copper ions induce expression of the Bacillus subtilis copZA operon encoding a metallochaperone, CopZ, and a CPx-type ATPase efflux protein, CopA. The copZA promoter region contains an inverted repeat sequence similar to that recognized by the mercury-sensing MerR protein. To investigate the possible involvement of MerR homologues in copZA regulation, null mutations were engineered affecting each of four putative MerR-type regulators: yyaN, yraB, yfmP and yhdQ. Two of these genes affected copper regulation. Mutation of yhdQ (hereafter renamed cueR) dramatically reduced copper induction of copZA, and purified CueR bound with high affinity to the copZA promoter region. These results suggest that CueR is a direct regulator of copZA transcription that mediates copper induction. Surprisingly, a yfmP mutation also reduced copper induction of copZA. Sequence analysis suggested that yfmP was cotranscribed with yfmO, encoding a putative multidrug efflux protein. The yfmPO operon is autoregulated: a yfmP mutation derepressed the yfmP promoter and purified YfmP bound the yfmP promoter region, but not the copZA promoter region. Since the yfmP mutant strain was predicted to express elevated levels of the YfmO efflux pump, it was hypothesized that copper efflux might be responsible for the reduced copZA induction. Consistent with this model, in a yfmP yfmO double mutant copper induction of copZA was normal. The results demonstrate the direct regulation of the B. subtilis copper efflux system by CueR, and indirect regulation by a putative multidrug efflux system.


Sign in / Sign up

Export Citation Format

Share Document