forest pest
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 47)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Tyler D. Nelson ◽  
Zachary G. MacDonald ◽  
Felix A. H. Sperling
Keyword(s):  

2021 ◽  
pp. 101525
Author(s):  
Holly L. Munro ◽  
Cristián R. Montes ◽  
Kamal J.K. Gandhi ◽  
M.A. Poisson

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1658
Author(s):  
Shuping Fang ◽  
Yu Ru ◽  
Yangyang Liu ◽  
Chenming Hu ◽  
Xuyang Chen ◽  
...  

It is of great value to research the problem of forest pest and disease control. Currently, helicopters play an important role in dealing with this problem. However, the spraying route planning still depends on the pilot’s driving experience, which leads to low efficiency and less accurate coverage. For this reason, this paper attempts to use intelligent algorithms to plan the pesticide spraying route for helicopters. When the helicopter is conducting spraying operations in multiple forest areas, the routes are divided into two parts: pesticide spraying routes for individual forest areas and dispatch routes between multiple forest areas. First, the shorter spraying route with fewer turnarounds for individual forest areas was determined. Then a two-layer intelligent algorithm, a combination of a genetic algorithm (GA) and ant colony optimization algorithm (ACO), was designed to determine the dispatch route between multiple forest areas, which is referred to as GAACO-GA. The performance was evaluated in self-created multiple forest areas and compared with other two-layer intelligent algorithms. The results show that the GAACO-GA algorithm found the shortest dispatch route (5032.75 m), which was 5.60%, 5.45%, 6.54%, and 4.07% shorter than that of GA-GA algorithm, simulated annealing-GA (SA-GA) algorithm, ACO-GA algorithm, and particle swarm optimization-GA (PSO-GA) algorithm, respectively. A spraying experiment with a helicopter was conducted near Pigzui Mountain, Huai’an City, Jiangsu Province, China. It was found that the flight path obtained from the proposed algorithm was 5.43% shorter than that derived from a manual planning method. The dispatch route length was reduced by 16.93%, the number of turnarounds was reduced by 11 times, and the redundant coverage was reduced by 17.87%. Moreover, helicopter fuel consumption and pesticide consumption decreased by 10.56% and 5.43%, respectively. The proposed algorithm can shorten the application route, reduce the number of turnarounds and the cost of spraying operations, and has the potential for use in spraying operations in smart forestry and agriculture.


Author(s):  
Rajarajan Ramakrishnan ◽  
Jaromír Hradecký ◽  
Amit Roy ◽  
Blanka Kalinová ◽  
Rya C. Mendezes ◽  
...  

2021 ◽  
Vol 13 (20) ◽  
pp. 4142
Author(s):  
Kelsey Parker ◽  
Arthur Elmes ◽  
Peter Boucher ◽  
Richard A. Hallett ◽  
John E. Thompson ◽  
...  

Invasive species are increasingly present in our ecosystems and pose a threat to the health of forest ecosystems. Practitioners are tasked with locating these invasive species and finding ways to mitigate their spread and impacts, often through costly field surveys. Meanwhile, researchers are developing remote sensing products to detect the changes in vegetation health and structure that are caused by invasive species, which could aid in early detection and monitoring efforts. Although both groups are working towards similar goals and field data are essential for validating RS products, these groups often work independently. In this paper, we, a group of researchers and practitioners, discuss the challenges to bridging the gap between researchers and practitioners and summarize the literature on this topic. We also draw from our experiences collaborating with each other to advance detection, monitoring, and management of the Hemlock Woolly Adelgid (Adelges tsugae; HWA), an invasive forest pest in the eastern U.S. We conclude by (1) highlighting the synergies and symbiotic mutualism of researcher–practitioner collaborations and (2) providing a framework for facilitating researcher–practitioner collaborations that advance fundamental science while maximizing the capacity of RS technologies in monitoring and management of complex drivers of forest health decline such as invasive species.


Author(s):  
Rebecca Epanchin-Niell ◽  
Jieyi Lu ◽  
Alexandra Thompson ◽  
Patrick C. Tobin ◽  
David R. Gray ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 827
Author(s):  
Long Liu ◽  
Yu-Shan Wei ◽  
Dun Wang

The gypsy moth, Lymantria dispar, is a polyphagous forest pest worldwide. The baculovirus, Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) is a natural pathogen of L. dispar. The Toll-like receptors (TLR) pathway plays a crucial role in both innate and adaptive immunity in animals. However, The TLR pathway and its underlying immune mechanism against baculovirus in L. dispar have not been explored. In this study, eleven TLRs and five downstream TLR pathway components were identified and characterized from L. dispar. Structural analysis indicated that intracellular Toll/interleukin-1 receptor (TIR) domains of LdTLRs and LdMyD88 contained three conserved motifs, and the 3D structures of TIR domains of LdTLRs possessed similar patterns in components arrangement and spatial conformation. The TLR proteins of L. dispar were placed into five monophyletic groups based on the phylogenetic analysis. LdTLR1, 2, 5, 6, 7, 8 and all identified downstream TLR pathway factors were highly induced upon LdMNPV infection, indicating that the TLR pathway of L. dispar was activated and might play a role in the immune response to LdMNPV infection. Collectively, these results help elucidate the crucial role of the TLR pathway in the immune response of L. dispar against LdMNPV, and offer a foundation for further understanding of innate immunity of the pest.


Sign in / Sign up

Export Citation Format

Share Document