pulsed mode
Recently Published Documents


TOTAL DOCUMENTS

279
(FIVE YEARS 66)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Jianfeng Huang ◽  
Tommaso Bagni ◽  
Y. Ilyin ◽  
Arend Nijhuis

Abstract The ITER Poloidal Field (PF) coils are wound into double pancakes with NbTi cable-in-conduit conductors, which are connected by joints in shaking hands lap-type configuration. The coils are operating in pulsed mode with a maximum operating current of 55 kA and peak magnetic field of 6.4 T, utilizing electromagnetic load on the conductors and joints. A series of PF qualification joint samples modified in praying hands configuration is measured in the SULTAN facility. For some samples, a nonlinear voltage-current (VI) characteristic is observed during the assessment of joint resistance. The growth of joint resistance versus the B×I product is larger than what is expected from the magneto-resistant copper contribution. Two non-homogeneous contact resistance models are developed and combined to quantitatively evaluate the reason for the nonlinear VI behavior in combination with the relevant power dissipation and current redistribution in the joint. The simulations reveal that, for the particular pre-qualification PFJEU2 sample with resistance variation up to 3.5 nΩ, the most probable reason for the nonlinear VI characteristic is a widely spread defective connection between copper sole and shim. The electromagnetic force involves a separation effect on the mechanically and electrically weakly connected parts, resulting into a varying resistance depending on transport current and background field. The hypothesis and models are validated by an experiment on a similar sample PFJEU3 and a post-mortem examination of the PFJEU2 sample.


2021 ◽  
pp. 107-110
Author(s):  
Z.O. Znak

The process of plasmochemical decomposition H2S in a rotating reactor is studied. The generation of ultrahigh-frequency radiation in pulsed mode was synchronized with the rotation of the rotor. The influence of the rotor speed on the formation of the region of existence of a plasma discharge in the reactor and separation of H2S de-composition products are established. The content of hydrogen and hydrogen sulfide in the gas phase was analyzed at different points of the reactor along its radius. The concentration of H2 and H2S was determined by chromatog-raphy.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 340
Author(s):  
Nikolay Samotaev ◽  
Pavel Dzhumaev ◽  
Konstantin Oblov ◽  
Alexander Pisliakov ◽  
Ivan Obraztsov ◽  
...  

A reduced size thermocatalytic gas sensor was developed for the detection of methane over the 20% of the explosive concentration. The sensor chip is formed from two membranes with a 150 µm diameter heated area in their centers and covered with highly dispersed nano-sized catalyst and inert reference, respectively. The power dissipation of the chip is well below 70 mW at the 530 °C maximum operation temperature. The chip is mounted in a novel surface mounted metal-ceramic sensor package in the form-factor of SOT-89. The sensitivity of the device is 10 mV/v%, whereas the response and recovery times without the additional carbon filter over the chip are <500 ms and <2 s, respectively. The tests have shown the reliability of the new design concerning the hotplate stability and massive encapsulation, but the high degradation rate of the catalyst coupled with its modest chemical power limits the use of the sensor only in pulsed mode of operation. The optimized pulsed mode reduces the average power consumption below 2 mW.


2021 ◽  
Vol 935 (1) ◽  
pp. 012007
Author(s):  
N Kondrateva ◽  
R Bolshin ◽  
M Krasnolutskaya ◽  
A Baturin ◽  
K Baturina ◽  
...  

Abstract The article presents the influence of pulsed and continuous irradiation (400…780 nm) on in vitro growth of the climbing rose variety “Camelot” at the illumination of 80±5 mmol/(m2s), temperature - 24±10C, and the relative air humidity - 73±2%. It was found that the experimental led light (LED) pulsed phytoirradiator contributed to a significant increase in the leaf surface area during cultivation of climbing rose microstems in Gamborg’s nutrient medium, the average growth was 2.94 mm2 compared to 2.80 mm2 in the control. Pulse irradiation increases the reproducibility of climbing roses by 1.7 times, and also increases the rooting rate up to 96% compared to 82% in the control. Experimental LED phytoirradiator of continuous irradiation promoted an increase in the leaf surface area growth at the level of the control luminescent phytoirradiator, but also provided a significant increase in the reproduction factor and rooting rate of rose microstems. In the pulsed mode, phytoinstallations consume only 50% of the electricity compared to the continuous irradiation mode.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012041
Author(s):  
A V Uvarov ◽  
A I Baranov ◽  
I A Morozov ◽  
D A Kudryashov ◽  
A A Maksimova ◽  
...  

Abstract This work is devoted to the study of the deposition of a-Si:H by the PECVD method in continuous and pulsed regime on test structures in the form of trenches with a high aspect ratio. The thicknesses of the layers obtained in these modes were investigated by the method of scanning electron microscopy. It was shown that the layers obtained in the pulsed mode, as compared with the continuous one, have better conformity.


2021 ◽  
Author(s):  
Fan Ye ◽  
Fengmin Cheng ◽  
Zhiwei Jia ◽  
JinChuan Zhang ◽  
Ning Zhuo ◽  
...  

Abstract A 20-channel distributed feedback (DFB) quantum cascade laser (QCL) arrays based on uniform buried grating have been demonstrated. In pulsed mode, peak power reaches 80 mW and slope efficiency reaches 167 mW/A for 2.5-mm-long laser in the arrays at room temperature. The loss difference of two band-edge mode increases when reflectivity of the front facet becomes small, which prevents the mode hopping. The device shows linear tuning after the anti-reflectivity coating is deposited in the front facet, maintaining peak power of 64 mW. The whole chip covers a tuning range of 64 cm-1, centering at 8.3 μm, with side-mode-suppression-ratio over 20 dB at room temperature.


Author(s):  
O. V. Chernyshova ◽  
T. B. Yelemessov ◽  
D. V. Drobot

Objectives. To identify the regularities of electrochemical processing of the heat-resistant GS32-VI alloy in a sulfuric acid electrolyte with a concentration of 100 g/dm3 under the action of a pulsed current in a pulsed mode.Methods. Using the electrochemical technological complex EHK-1012 (developed by IP Tetran) and a non-compensatory method of measuring potential, polarization and depolarization curves with a change in pulse duration and a pause between them were recorded. The current pulses had an amplitude ranging from 0 to 3.5 A (when recording the polarization and depolarization curves), pulse durations ranging from 200 to 1200 ms, and a pause (delay) between pulses ranging from 50 to 500 ms. There were no reverse current pulses.Results. The parameters of the current program that provide the maximum values of the alloy dissolution rate and current output were determined: with a current pulse amplitude of 2 A, a current pulse duration of 500 ms, and a pause duration between pulses of 250 ms, the maximum dissolution rate of the alloy is 0.048 g/h·cm2, while the current output for nickel is 61.6% with an anode area of 10 cm2. The basic technological scheme for processing the heat-resistant GS32-VI alloy, which includes anodic alloy dissolution in a pulsed mode, is proposed.Conclusions. Electrochemical dissolution of GS32-VI alloy under pulsed current action results in an optimal dissolution rate ratio of the alloy components, ensuring the production of a cathode precipitate with a total nickel and cobalt content of 97.5%.


2021 ◽  
Vol 2091 (1) ◽  
pp. 012014
Author(s):  
K V Pozhar ◽  
M O Mikhailov ◽  
E A Polyakova ◽  
E L Litinskaia

Abstract The paper considers the method of diffuse reflectance spectroscopy for noninvasive glucose level measuring in biological tissues. It is proposed a portable implementation of the system, based on a laser diode with a wavelength of 1600 nm and a power of 30 mW, operating in a pulsed mode, as well as a set of NIR-photodiodes located around the laser. The measuring system has been tested on model solutions with diffuse reflectance from polystyrene and pigskin. In the course of measurements on fixed system, an error of ~17 mg/dl is observed, which can be reduced by improving miniature laser sources.


2021 ◽  
Vol 11 (20) ◽  
pp. 9749
Author(s):  
Ibrahim I. Suliman ◽  
Abdelmoneim Sulieman ◽  
Essam Mattar

Acceptance testing and commission are essential elements of the quality assurance program for imaging equipment. We present the results of a performance evaluation of Flat Panel-Based Cardiovascular Fluoroscopy X-ray Systems as a part of acceptance testing and commissioning. Measurements were obtained using a calibrated dose rate meter, patient equivalent phantoms, and Leeds image quality test tools. The results were compared with the manufacturer and European acceptability criteria. The entrance surface air kerma (ESAK) rate ranged from 8.0 to 12.0 mGy min−1 in the continuous mode and from 0.01 to 0.04 mGy fr−1 in the pulsed mode of operation. Detector-input air kerma rates ranged from 0.29 to 0.39 mGy min−1 in continuous mode and from 0.02 to 0.07 µGy fr−1 in pulsed mode. Fluoroscopy device half-value layer (HVL) ranged from 2.5 to 3.0 mm Al, and the low resolution ranged from 0.9 to 1.3%. The spatial resolution limit was double that of the image intensifier (2.4 to 3.6) lp/mm. Flat-panel fluoroscopy demonstrated superior image quality and dose performance as compared to conventional image intensifier-based fluoroscopy. The quality assurance measurements presented are essential in the rapid evaluation of the imaging system for acceptance testing and commissioning.


2021 ◽  
Vol 9 (3) ◽  
pp. 70-78
Author(s):  
A. Yu. Tsukanov ◽  
D. S. Akhmetov ◽  
A. A. Novikov ◽  
N. A. Negrov ◽  
A. R. Putintseva ◽  
...  

Introduction. Incrustation and biofilms formation on the surface of ureteral stents are still the most significant complications of internal drainage of the upper urinary tract. There are much researchers conducted to combat these complications. The lack of a solution to this problem affects the ultimate results of treatment and economic losses. The issue of impact by physical methods on the ureteral stent, particularly the use of extracorporeal ultrasound acoustic exposure remains, promising and poorly covered.Purpose of the study. To determine the optimal application points of extracorporeal acoustic exposure by the low-frequency ultrasonic amplitude-modulated signal on a ureteral stent in an experiment.Materials and methods. The original device was designed. The main principle of its operation is the generation of an amplitude-modulated ultrasonic signal in two modes: pulsed and permanent. A sexually mature mongrel dog was an experimental animal. The ureteral stent was placed by laparotomy and cystotomy. Intraoperatively, the emitter of the developed device was applied to the skin of the animal, according to the previously indicated topographic and anatomical landmarks. At the same time, an ultrasonic wave noise analyzer was applied through the laparotomy wound to the appropriate level of the ureter. Measurements of ultrasound intensity indicators were performed three times in two operating modes of the device.Results. Pulsed mode: for the ureteral upper third, the highest ultrasonic intensity (123.67 dB) was achieved along the posterior axillary line. For the ureteral middle third, the best ultrasound intensity (115 dB) was obtained by the posterior axillary line. For the ureteral lower third, the highest ultrasound intensity (113.67 dB) was noted along the middle axillary line.Permanent mode: the best ultrasonic intensity in the projection of the ureteral upper, middle, and lower thirds was achieved along the posterior axillary line and was 118.67 dB, 117 dB and 116.67 dB, accordingly. However, there was an excessive heat effect, manifested by hyperemia and hyperthermia of the animal's skin, fascicular muscle contractions during the instrument functioned in the permanent mode, which can potentially lead to thermal burns and intolerance to the procedure.Conclusion. The pulsed mode of the device function is most safe. The optimal application points of the instrument emitter for the ureteral upper and middle thirds is the posterior axillary line, and for the ureteral lower third is the middle axillary line.


Sign in / Sign up

Export Citation Format

Share Document