spine board
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Roessler MS ◽  
M Riffelmann ◽  
N Kunze-Szikszay ◽  
M Lier ◽  
O Schmid ◽  
...  

Abstract Background Spinal stabilisation is recommended for prehospital trauma treatment. In Germany, vacuum mattresses are traditionally used for spinal stabilisation, whereas in anglo-american countries, long spine boards are preferred. While it is recommended that the on-scene time is as short as possible, even less than 10 minutes for unstable patients, spinal stabilisation is a time-consuming procedure. For this reason, the time needed for spinal stabilisation may prevent the on-scene time from being brief. The aim of this simulation study was to compare the time required for spinal stabilisation between a scoop stretcher in conjunction with a vacuum mattress and a long spine board. Methods Medical personnel of different professions were asked to perform spinal immobilizations with both methods. A total of 172 volunteers were immobilized under ideal conditions as well as under realistic conditions. A vacuum mattress was used for 78 spinal stabilisations, and a long spinal board was used for 94. The duration of the procedures were measured by video analysis. Results Under ideal conditions, spinal stabilisation on a vacuum mattress and a spine board required 254.4 s (95 % CI 235.6–273.2 s) and 83.4 s (95 % CI 77.5–89.3 s), respectively (p < 0.01). Under realistic conditions, the vacuum mattress and spine board required 358.3 s (95 % CI 316.0–400.6 s) and 112.6 s (95 % CI 102.6–122.6 s), respectively (p < 0.01). Conclusions Spinal stabilisation for trauma patients is significantly more time consuming on a vacuum mattress than on a long spine board. Considering that the prehospital time of EMS should not exceed 60 minutes and the on-scene time should not exceed 30 minutes or even 10 minutes if the patient is in extremis, based on our results, spinal stabilisation on a vacuum mattress may consume more than 20 % of the recommended on-scene time. In contrast, stabilisation on a spine board requires only one third of the time required for that on a vacuum mattress. We conclude that a long spine board may be feasible for spinal stabilisation for critical trauma patients with timesensitive life threatening ABCDE-problems to ensure the shortest possible on-scene time for prehospital trauma treatment, not least if a patient has to be rescued from an open or inaccessible terrain, especially that with uneven overgrown land.


2020 ◽  
Vol 35 (4) ◽  
pp. 382-387 ◽  
Author(s):  
Davut D. Uzun ◽  
Matthias K. Jung ◽  
Jeronimo Weerts ◽  
Matthias Münzberg ◽  
Paul A. Grützner ◽  
...  

AbstractBackground:Immobilization of the cervical spine by Emergency Medical Services (EMS) personnel is a standard procedure. In most EMS, multiple immobilization tools are available.The aim of this study is the analysis of residual spine motion under different types of cervical spine immobilization.Methods:In this explorative biomechanical study, different immobilization techniques were performed on three healthy subjects. The test subjects’ heads were then passively moved to cause standardized spinal motion. The primary endpoints were the remaining range of motion for flexion, extension, bending, and rotation measured with a wireless human motion detector.Results:In the case of immobilization of the test person (TP) on a straight (0°) vacuum mattress, the remaining rotation of the cervical spine could be reduced from 7° to 3° by additional headblocks. Also, the remaining flexion and extension were reduced from 14° to 3° and from 15° to 6°, respectively. The subjects’ immobilization was best on a spine board using a headlock system and the Spider Strap belt system (MIH-Medical; Georgsmarienhütte, Germany). However, the remaining cervical spine extension increased from 1° to 9° if a Speedclip belt system was used (Laerdal; Stavanger, Norway). The additional use of a cervical collar was not advantageous in reducing cervical spine movement with a spine board or vacuum mattress.Conclusions:The remaining movement of the cervical spine is minimal when the patient is immobilized on a spine board with a headlock system and a Spider Strap harness system or on a vacuum mattress with additional headblocks. The remaining movement of the cervical spine could not be reduced by the additional use of a cervical collar.


Author(s):  
Vinay Kumar Pallerla ◽  
Mohamed Samir Hefzy

Abstract Cushions have been used on spine boards to reduce the interface pressure acting on the skin and thus prevent the formation of pressure ulcers. Several studies have focused on determining how using different types of cushions can reduce the normal interface pressure on the buttocks while lying on the spine boards. On the other hand, and while it has been agreed upon that the shear stresses contribute to the formation of pressure ulcers, this role has not been understood or quantified. The purpose of this work is to use 3-D finite element modeling to determine the contact frictional shear stresses at the buttocks while an individual is lying on a spine board when cushions of various stiffnesses are used. The Zygote Solid 3D Male Human Anatomy model was used to construct a 3D CAD model of a section of the human body in the pelvic region. Skin, fat, muscles and bones were identified in the model. The Zygote SolidWorks model, the HyperMesh finite element preprocessor, and the ABAQUS software were used to create the finite element model. Bones were considered as an elastic isotropic material whereas skin, fat and muscles were modeled using Hyperelastic Neo-Hookean materials. Results were obtained to find the effects of body weight on the shear stresses while a person is lying flat with his buttocks contacting the spine board. The results indicate that frictional skin shear stresses cannot be ignored since they were found to be, and depending on the cushion material, about 15% to 35% of the maximum normal pressure. We propose, and for the first time, a relationship to estimate the maximum shear stresses at the buttocks in terms of the maximum normal pressure for different Young’s moduli of cushions. These results can also be used as a guide to select cushion material that minimize normal and shear interface stresses.


2019 ◽  
pp. 1-9
Author(s):  
Helen Sun ◽  
James Wilson ◽  
Mary Joan Roach ◽  
Mohamed Samir Hefzy ◽  
Greg Nemunaitis

2018 ◽  
Vol 53 (8) ◽  
pp. 752-755
Author(s):  
Francis X. Feld

Since the early 1970s, initial management of patients with suspected spinal injuries has involved the use of a cervical collar and long spine board for full immobilization, which was thought to prevent additional injury to the cervical spine. Despite a growing body of literature demonstrating the detrimental effects and questionable efficacy of spinal immobilization, the practice continued until 2013, when the National Association of EMS Physicians issued a position statement calling for a reduction in the use of spinal immobilization and a shift to spinal-motion restriction. This article examines the literature that prompted the change in spinal-injury management and the virtual elimination of the long spine board as a tool for transport.


Spine ◽  
2017 ◽  
Vol 42 (24) ◽  
pp. E1398-E1402 ◽  
Author(s):  
Mark L. Prasarn ◽  
Per Kristian Hyldmo ◽  
Laura A. Zdziarski ◽  
Evan Loewy ◽  
Dewayne Dubose ◽  
...  

2017 ◽  
Vol 5 (12) ◽  
pp. 232596711774475 ◽  
Author(s):  
Brian E. Etier ◽  
Grant E. Norte ◽  
Megan M. Gleason ◽  
Dustin L. Richter ◽  
Kelli F. Pugh ◽  
...  

Background: The National Athletic Trainers’ Association (NATA) advocates for cervical spine immobilization on a rigid board or vacuum splint and for removal of athletic equipment before transfer to an emergency medical facility. Purpose: To (1) compare triplanar cervical spine motion using motion capture between a traditional rigid spine board and a full-body vacuum splint in equipped and unequipped athletes, (2) assess cervical spine motion during the removal of a football helmet and shoulder pads, and (3) evaluate the effect of body mass on cervical spine motion. Study Design: Controlled laboratory study. Methods: Twenty healthy male participants volunteered for this study to examine the influence of immobilization type and presence of equipment on triplanar angular cervical spine motion. Three-dimensional cervical spine kinematics was measured using an electromagnetic motion analysis system. Independent variables included testing condition (static lift and hold, 30° tilt, transfer, equipment removal), immobilization type (rigid, vacuum-mattress), and equipment (on, off). Peak sagittal-, frontal-, and transverse-plane angular motions were the primary outcome measures of interest. Results: Subjective ratings of comfort and security did not differ between immobilization types ( P > .05). Motion between the rigid board and vacuum splint did not differ by more than 2° under any testing condition, either with or without equipment. In removing equipment, the mean peak motion ranged from 12.5° to 14.0° for the rigid spine board and from 11.4° to 15.4° for the vacuum-mattress splint, and more transverse-plane motion occurred when using the vacuum-mattress splint compared with the rigid spine board (mean difference, 0.14 deg/s [95% CI, 0.05-0.23 deg/s]; P = .002). In patients weighing more than 250 lb, the rigid board provided less motion in the frontal plane ( P = .027) and sagittal plane ( P = .030) during the tilt condition and transfer condition, respectively. Conclusion: The current study confirms similar motion in the vacuum-mattress splint compared with the rigid backboard in varying sized equipped or nonequipped athletes. Cervical spine motion occurs when removing a football helmet and shoulder pads, at an unknown risk to the injured athlete. In athletes who weighed more than 250 lb, immobilization with the rigid board helped to reduce cervical spine motion. Clinical Relevance: Athletic trainers and team physicians should consider immobilization of athletes who weigh more than 250 lb with a rigid board.


Injury ◽  
2016 ◽  
Vol 47 (8) ◽  
pp. 1801-1805 ◽  
Author(s):  
Mark N. Pernik ◽  
Hudson H. Seidel ◽  
Ryan E. Blalock ◽  
Andrew R. Burgess ◽  
MaryBeth Horodyski ◽  
...  

2016 ◽  
Vol 28 (3) ◽  
pp. 144-151 ◽  
Author(s):  
Greg Nemunaitis ◽  
Mary Joan Roach ◽  
Mohamed Samir Hefzy ◽  
Melvin Mejia

Sign in / Sign up

Export Citation Format

Share Document