scholarly journals Constraining the magnetic vector in the quiet solar photosphere and the impact of instrumental degradation

Author(s):  
R. J. Campbell ◽  
S. Shelyag ◽  
C. Quintero Noda ◽  
M. Mathioudakis ◽  
P. H. Keys ◽  
...  
2019 ◽  
Vol 57 (1) ◽  
pp. 189-226 ◽  
Author(s):  
Mats Carlsson ◽  
Bart De Pontieu ◽  
Viggo H. Hansteen

The solar chromosphere forms a crucial, yet complex and until recently poorly understood, interface between the solar photosphere and the heliosphere. ▪ Advances in high-resolution instrumentation, adaptive optics, image reconstruction techniques, and space-based observatories allow unprecedented high-resolution views of the finely structured and highly dynamic chromosphere. ▪ Dramatic progress in numerical computations allows 3D radiative magnetohydrodynamic forward models to take the place of the previous generation of 1D semiempirical atmosphere models. These new models provide deep insight into complex nonlocal thermodynamic equilibrium chromospheric diagnostics and enable physics-based interpretations of observations. ▪ This combination of modeling and observations has led to new insights into the role of shock waves, transverse magnetic waves, magnetic reconnection and flux emergence in the chromospheric energy balance, the formation of spicules, the impact of ion-neutral interactions, and the connectivity between chromosphere and transition region. ▪ During the next few years, the advent of new instrumentation (integral-field-unit spectropolarimetry) and observatories (ALMA, DKIST), coupled with novel inversion codes and expansion of existing numerical models to deal with ever more complex physical processes (including multifluid approaches), is expected to lead to major new insights into the dominant heating processes in the chromosphere and beyond.


2014 ◽  
Vol 10 (S305) ◽  
pp. 368-371 ◽  
Author(s):  
Nataliya G. Shchukina ◽  
Andrii V. Sukhorukov ◽  
Javier Trujillo Bueno

AbstractThe solar abundances of Fe and of the CNO elements play an important role in addressing a number of important issues such as the formation, structure, and evolution of the Sun and the solar system, the origin of the chemical elements, and the evolution of stars and galaxies. Despite the large number of papers published on this issue, debates about the solar abundances of these elements continue. The aim of the present investigation is to quantify the impact of photospheric magnetic fields on the determination of the solar chemical abundances. To this end, we used two 3D snapshot models of the quiet solar photosphere with a different magnetization taken from recent magneto-convection simulations with small-scale dynamo action. Using such 3D models we have carried out spectral synthesis for a large set of Fei, Ci, Ni, and Oi lines, in order to derive abundance corrections caused by the magnetic, Zeeman broadening of the intensity profiles and the magnetically induced changes of the photospheric temperature structure. We find that if the magnetism of the quiet solar photosphere is mainly produced by a small-scale dynamo, then its impact on the determination of the abundances of iron, carbon, nitrogen and oxygen is negligible.


Author(s):  
Qingshan Feng ◽  
Jeff Sutherland ◽  
Bill Gu ◽  
Yao Wei ◽  
Cui Tao

With an overall objective for broad and confident integrity management of the PetroChina Pipeline Company’s pipeline network, we illustrate the impact of a collaborative effort between PetroChina and GE Oil & Gas for the inspection and mitigation of spiral weld anomalies, particularly for new advanced assessments of features oriented along and within the spiral weld. Tool configuration, sensor types and the role of novel data analysis techniques including magnetic vector component measurements, is presented as a set to address a broader variety of spiral weld threats, while ensuring a high level of operational robustness and reliability. This paper describes some of the science behind the art, and describes the fundamentals of MFL magnetics and it’s evolution as an ILI technology into the 21st century for spiral weld anomaly inspection.


2018 ◽  
Vol 611 ◽  
pp. A4 ◽  
Author(s):  
J. Löhner-Böttcher ◽  
W. Schmidt ◽  
F. Stief ◽  
T. Steinmetz ◽  
R. Holzwarth

Context. The solar convection manifests as granulation and intergranulation at the solar surface. In the photosphere, convective motions induce differential Doppler shifts to spectral lines. The observed convective blueshift varies across the solar disk. Aim. We focus on the impact of solar convection on the atmosphere and aim to resolve its velocity stratification in the photosphere. Methods. We performed high-resolution spectroscopic observations of the solar spectrum in the 6302 Å range with the Laser Absolute Reference Spectrograph at the Vacuum Tower Telescope. A laser frequency comb enabled the calibration of the spectra to an absolute wavelength scale with an accuracy of 1 m s−1. We systematically scanned the quiet Sun from the disk center to the limb at ten selected heliocentric positions. The analysis included 99 time sequences of up to 20 min in length. By means of ephemeris and reference corrections, we translated wavelength shifts into absolute line-of-sight velocities. A bisector analysis on the line profiles yielded the shapes and convective shifts of seven photospheric lines. Results. At the disk center, the bisector profiles of the iron lines feature a pronounced C-shape with maximum convective blueshifts of up to −450 m s−1 in the spectral line wings. Toward the solar limb, the bisectors change into a “\”-shape with a saturation in the line core at a redshift of +100 m s−1. The center-to-limb variation of the line core velocities shows a slight increase in blueshift when departing the disk center for larger heliocentric angles. This increase in blueshift is more pronounced for the magnetically less active meridian than for the equator. Toward the solar limb, the blueshift decreases and can turn into a redshift. In general, weaker lines exhibit stronger blueshifts. Conclusions. Best spectroscopic measurements enabled the accurate determination of absolute convective shifts in the solar photosphere. We convolved the results to lower spectral resolution to permit a comparison with observations from other instruments.


2021 ◽  
Author(s):  
Błażej Kuźma ◽  
Kris Murawski ◽  
Zdzisław Musielak ◽  
Stefaan Poedts ◽  
Dariusz Wójcik

<p>We present a new insight into the propagation of ion magnetoacoustic and neutral acoustic waves in a magnetic arcade in the lower solar atmosphere. By means of numerical simulations, we aim to: (a) study two-fluid waves propagating in a magnetic arcade embedded in the partially-ionized, lower solar atmosphere; and (b) investigate the impact of the background magneticfield configuration on the observed wave-periods. We consider a 2D approximation of the gravitationally stratified and partially-ionized lower solar atmosphere consisting of ion + electron and neutral fluids that are coupled by ion-neutral collisions. In this model, the convection below the photosphere is responsible for the excitation of ion magnetoacoustic-gravity and neutral acoustic-gravity waves. We find that in the solar photosphere, where ions and neutrals are strongly coupled by collisions, magnetoacoustic-gravity and acoustic-gravity waves have periods ranging from250s to350s. In the chromosphere, where the collisional coupling is weak, the wave characteristics strongly depend on the magnetic field configuration. Above the foot-points of the considered arcade, the plasma is dominated by vertical magnetic field along which ion slow magnetoacoustic-gravity waves are guided. These waves exhibit a broad range of periods with the most prominent periods of 180 s, 220 s, and 300 s. Above the main loop of the solar arcade, where mostly horizontal magnetic field lines guide ion magnetoacoustic waves, the main spectral power reduces to the period of about 180 s and longer wave-periods do not exist. The obtained results demonstrate unprecedented, never reported before level of agreement with the recently reported observational data of Wisniewska et al. (2016) and Kayshap et al. (2018). We demonstrate that the two-fluid approach is indeed crucial for a description of wave-related processes in the lower solar atmosphere, with energy transport and dissipation being of the highest interest among them.</p>


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


1997 ◽  
Vol 161 ◽  
pp. 189-195
Author(s):  
Cesare Guaita ◽  
Roberto Crippa ◽  
Federico Manzini

AbstractA large amount of CO has been detected above many SL9/Jupiter impacts. This gas was never detected before the collision. So, in our opinion, CO was released from a parent compound during the collision. We identify this compound as POM (polyoxymethylene), a formaldehyde (HCHO) polymer that, when suddenly heated, reformes monomeric HCHO. At temperatures higher than 1200°K HCHO cannot exist in molecular form and the most probable result of its decomposition is the formation of CO. At lower temperatures, HCHO can react with NH3 and/or HCN to form high UV-absorbing polymeric material. In our opinion, this kind of material has also to be taken in to account to explain the complex evolution of some SL9 impacts that we observed in CCD images taken with a blue filter.


1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


Sign in / Sign up

Export Citation Format

Share Document