Effect of Cooling Rate during Thermal Processes on the Electrical Properties of Cast Multi-Crystalline Silicon

Silicon ◽  
2022 ◽  
Author(s):  
Panbing Zhou ◽  
Shilong Liu ◽  
Naigen Zhou ◽  
Xiuqin Wei ◽  
Lang Zhou
2013 ◽  
Vol 709 ◽  
pp. 172-175
Author(s):  
Li Lv ◽  
Min Zhang ◽  
Li Qin Yang ◽  
Xin Sheng Yang ◽  
Yong Zhao

Single crystals of Bi2Se3 topological insulators have been prepared though melt-grown reaction. The sintering parameters of holding time and cooling rate obviously affect the phase structure and electrical properties. The samples with layered structure can be perpendicular cleaved with (0 0 L) axis. All the samples show n-type conductivity caused by the existence of Se vacancies. For low cooling rate, more Se atoms anti-occupy Bi lattice sites, which decreases c-axis lattice parameter and increases carrier concentration n; high cooling rate increases c and decreases n because of less Se atoms occupying Bi lattice sites. Increasing holding time firstly decreases the ratio of Se atoms occupying Bi lattice sites and then increases it, which gives rise to c firstly increase then decrease and n firstly decrease then increase.


2011 ◽  
Vol 675-677 ◽  
pp. 101-104
Author(s):  
Qi Zhi Xing ◽  
Wei Dong ◽  
Shu Ang Shi ◽  
Guo Bin Li ◽  
Yi Tan

Multi-crystalline silicon ingots were prepared by directional solidification using vacuum induction melting furnace. The content of aluminum and iron deeply decreased in the columnar crystal region of the multi-crystalline silicon ingots. The columnar crystal growth broke off corresponded to the iron contents sharply increased. The height of columnar crystal in the silicon ingots related to the pulling rates had been clarified by the constitutional supercooling theory. The maximum of the resistivity and the minority carrier lifetime closed to the transition zone where the conductive type changed from p-type to n-type in silicon ingots. Further analysis suggested that the electrical properties were related to the contents of shallow level impurities aluminum, boron and phosphorus.


1986 ◽  
Vol 71 ◽  
Author(s):  
T I Kamins

AbstractThe electrical properties of polycrystalline silicon differ from those of single-crystal silicon because of the effect of grain boundaries. At low and moderate dopant concentrations, dopant segregation to and carrier trapping at grain boundaries reduces the conductivity of polysilicon markedly compared to that of similarly doped single-crystal silicon. Because the properties of moderately doped polysilicon are limited by grain boundaries, modifying the carrier traps at the grain boundaries by introducing hydrogen to saturate dangling bonds improves the conductivity of polysilicon and allows fabrication of moderate-quality transistors with their active regions in the polycrystalline films. Removing the grain boundaries by melting and recrystallization allows fabrication of high-quality transistors. When polysilicon is used as an interconnecting layer in integrated circuits, its limited conductivity can degrade circuit performance. At high dopant concentrations, the active carrier concentration is limited by the solid solubility of the dopant species in crystalline silicon. The current through oxide grown on polysilicon can be markedly higher than that on oxide of similar thickness grown on singlecrystal silicon because the rough surface of a polysilicon film enhances the local electric field in oxide thermally grown on it. Consequently, the structure must be controlled to obtain reproducible conduction through the oxide. The differences in the behavior of polysilicon and single-crystal silicon and the limited electrical conductivity in polysilicon are having a greater impact on integrated circuits as the feature size decreases and the number of devices on a chip increases in the VLSI era.


2014 ◽  
Vol 132 (14) ◽  
pp. n/a-n/a ◽  
Author(s):  
Adriana B. Espinoza-Martínez ◽  
Carlos A. Ávila-Orta ◽  
Víctor J. Cruz-Delgado ◽  
Francisco J. Medellín-Rodríguez ◽  
Darío Bueno-Baqués ◽  
...  

2010 ◽  
Vol 42 (7) ◽  
pp. 587-591 ◽  
Author(s):  
Akihiko Kono ◽  
Naoko Miyakawa ◽  
Satoshi Kawadai ◽  
Yousuke Goto ◽  
Takeshi Maruoka ◽  
...  

1983 ◽  
Vol 23 ◽  
Author(s):  
T.W. Sigmon ◽  
P.G. Carey ◽  
R.L. Press ◽  
T.S. Fahlen ◽  
R.J. Pressley

ABSTRACT4 He backscattering and channeling and 4-point probe resistivity measurements are used to characterize the doping of 〈100〉 Si directly from the gas phase by using a laser induced melt/recrystallization process. Impurity concentrations from 3×1019 to 5×1020 cm−3 and sheet resistivities as low as 20 Ω/╒ are obtained by variation of the laser energy density or number of passes. Diodes fabricated by this process exhibit near ideal I-V characteristics with sharp reverse breakdowns determined by junction edge effects. Annealing at 850° C further reduces the generation-recombination centers to values that result in an ideality factor of 1.0.


1996 ◽  
Vol 452 ◽  
Author(s):  
N. Beck ◽  
P. Orres ◽  
J. Fric ◽  
Z. Remeš ◽  
A. Poruba ◽  
...  

AbstractWe show that the optical and electrical properties of microcrystalline silicon (μc-Si:H) deposited by the VHF-GD technique at 110 MHz can considerably be tuned by changing the dilution ratio of silane to hydrogen.With increasing silane dilution we observe enhanced optical absorption for energies below 2 eV due to the transition of the material from amorphous / microcrystalline mixture to a pure microcrystalline phase. Simultaneously, the light scattering and the defect absorption increases. Strong dilution also promotes the incorporation of impurities into the material, leading to a pronounced extrinsic behaviour as seen from the decrease of the activiation energy of the electrical conductivity.The electrical properties were investigated in the dark by the Time of Flight technique. We measured drift mobilities at room temperature which slightly increase with dilution, reaching values of 3 cm2/Vs for electrons and 1.2 cm2/Vs for holes. The ratio between electron and hole drift mobilities is found to be around 2 for all samples studied, similar to that of crystalline silicon.Furthermore, post-transient Time of Flight measurements revealed detrimental electron deep traps in low dilution material.


2011 ◽  
Vol 71-78 ◽  
pp. 778-781 ◽  
Author(s):  
Tao Li ◽  
Chun Lan Zhou ◽  
Zhen Gang Liu ◽  
Wen Jing Wang ◽  
Yang Song ◽  
...  

In this paper, the improvement on electrical properties of screen-printed crystalline silicon solar cells by light-induced electroplating of silver is studied. Optical losses are analysed by the introduction of scale factor in the calculation. Electrical losses are mainly from the seed layer electrodes, top layer electrodes, the emitter, the base and the contact resistance between silicon and silver. Light-induced electroplating of silver is able to reduce the total power losses of screen-printed solar cells obviously by denser silver electrode. In experiment, the relative increments of I-V parameters as a function of electroplating time for crystalline silicon solar cells with 60μm, 75μm and 90μm wide seed layer electrodes are measured. After light-induced electroplating process, the cells efficiencies of 16.8%, 17.2% and 17.8% have reached on 60μm, 75μm and 90μm wide gridlines screen-printed solar cells, respectively. The calculated results and experimental data show good agreement. Due to the successful verification by comparing between numerical simulation and experimental data, the simulation results could be used to optimize the two-layer electrode structure and light-induced electroplating process.


Rare Metals ◽  
2007 ◽  
Vol 26 (1) ◽  
pp. 39-44 ◽  
Author(s):  
L HONGYU ◽  
K HUI ◽  
J DONGMEI ◽  
S WANGZHOU ◽  
M XUEMING ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document